Skip to main content

Semi-Lagrangian Particle Methods for Hyperbolic Equations

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems I (HYP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 236))

  • 1176 Accesses

Abstract

Particle methods with remeshing of particles at each time step can be seen as forward semi-Lagrangian conservative methods for advection-dominated problems, and must be analyzed as such. In this article, we investigate the links between these methods and finite-difference methods and present convergence results as well as techniques to control their oscillations. We emphasize the role of the size of the time step and show that large time steps, only limited by the flow strain, can lead to significant gains in both computational cost and accuracy. Our analysis is illustrated by numerical simulations in level set methods and in fluid mechanics for compressible and incompressible flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Ben, Moussa, J.-P. Vila, Convergence of SPH method for scalar nonlinear conservation laws. SIAM J. Numer. Anal. 37, 863–887 (2000)

    Article  MathSciNet  Google Scholar 

  2. M. Bergdorf, G.-H. Cottet, P. Koumoutsakos, Multilevel adaptive particle methods for convection-diffusion equations. SIAM Multiscale Model. Simul. 4, 328–357 (2005)

    Article  MathSciNet  Google Scholar 

  3. M. Bergdorf, P. Koumoutsakos, A Lagrangian particle-wavelet method. SIAM Multiscale Model. Simul. 5(3), 980–995 (2006)

    Article  MathSciNet  Google Scholar 

  4. G.-H. Cottet, P.-A. Raviart, Particle methods for the one-dimensional Vlasov-Poisson equations. SIAM J. Numer. Anal. 21, 52–76 (1984)

    Article  MathSciNet  Google Scholar 

  5. G.-H. Cottet, P. Koumoutsakos, Vortex Methods (Cambridge University Press, 2000)

    Google Scholar 

  6. G.-H. Cottet, A new approach for the analysis of vortex methods in 2 and 3 dimensions. Ann. Inst. Henri Poincaré 5, 227–285 (1988)

    Article  MathSciNet  Google Scholar 

  7. G.-H. Cottet, A. Magni, TVD remeshing schemes for particle methods, C. R. Acad. Sci. Paris, Ser. I 347, 1367–1372 (2009)

    Google Scholar 

  8. G.-H. Cottet, L. Weynans, Particle methods revisited: a class of high-order finite-difference schemes, C. R. Acad. Sci. Paris, Ser. I 343, 51–56 (2006)

    Google Scholar 

  9. G.-H. Cottet, B. Michaux, S.Ossia, G. Vanderlinden, A comparison of spectral and vortex methods in three-dimensional incompressible flows, J. Comput. Phys. 175 (2002)

    Article  Google Scholar 

  10. G.-H. Cottet, J.-M. Etancelin, F. Perignon, C. Picard, High order Semi-Lagrangian particles for transport equations: numerical analysis and implementation issues. ESAIM Math. Model. Numer. Anal. 48, 1029–1060 (2014)

    Article  MathSciNet  Google Scholar 

  11. V. Daru, C. Tenaud, Evaluation of TVD high resolution schemes for unsteady viscous shocked flows. Comput. Fluids 30, 89–113 (2001)

    Article  Google Scholar 

  12. B. Despres, F. Lagoutiere, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. J. Sci. Comput. 16, 479–524 (2002)

    Article  MathSciNet  Google Scholar 

  13. J.-M. Etancelin, G.-H. Cottet, F. Perignon, C. Picard, Multi-CPU and multi-GPU hybrid computations of multi-scale scalar transport. 26th International conference on parallel computational fluid dynamics, Trondheim, 2014

    Google Scholar 

  14. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (McGraw-Hill Inc., 1981)

    Google Scholar 

  15. P. Koumoutsakos, A. Leonard, High resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 1–38 (1995)

    Article  Google Scholar 

  16. P. Koumoutsakos, Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138, 821–857 (1997)

    Article  MathSciNet  Google Scholar 

  17. R. Krasny, Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292–313 (1986)

    Article  Google Scholar 

  18. J.-B. Lagaert, G. Balarac, G.-H. Cottet, Hybrid spectral particle method for the turbulent transport of a passive scalar. J. Comput. Phys. 260, 127–142 (2014)

    Article  MathSciNet  Google Scholar 

  19. M.-S. Liou, C.J. Steffen Jr., A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    Article  MathSciNet  Google Scholar 

  20. A. Magni, G.-H. Cottet, Accurate, non-oscillatory remeshing schemes for particle methods. J. Comput. Phys. 231(1), 152–172 (2012)

    Article  MathSciNet  Google Scholar 

  21. J.E. Martin, E. Meiburg, Numerical investigation of three-dimensional evolving jets subject to axisymmetric and azimuthal perturbation. J. Fluid Mech. 230, 271 (1991)

    Article  Google Scholar 

  22. J.J. Monaghan, Particle methods for hydrodynamics. Comput. Phys. Rep. 3, 71–124 (1985)

    Article  Google Scholar 

  23. G. Oger, M. Doring, B. Alessandrini, P. Ferrant, An improved SPH method: towards higher order convergence. J. Comput. Phys. 225, 1472–1492 (2007)

    Article  MathSciNet  Google Scholar 

  24. M.L. Ould-Salihi, G.-H. Cottet, M. El Hamraoui, Blending finite-differences and vortex methods for incompressible flow computations. SIAM J. Sci. Comput. 22, 1655–1674 (2000)

    Article  MathSciNet  Google Scholar 

  25. P. Ploumhans, G.S. Winckelmans, Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. J. Comput. Phys. 165, 354–406 (2000)

    Article  MathSciNet  Google Scholar 

  26. S. Reboux, B. Schrader, I. Sbalzarini, A self-organizing Lagrangian particle method for adaptive-resolution advectiondiffusion simulations, J. Comput. Phys. 23, 3623–3646 (2012)

    Article  MathSciNet  Google Scholar 

  27. G. Russo, J.A. Strain, Fast triangulated vortex methods for the 2D Euler equations. J. Comput. Phys. 111, 291–323 (1994)

    Article  MathSciNet  Google Scholar 

  28. L. Weynans, A. Magni, Consistency, accuracy and entropic behavior of remeshed particle methods. ESAIM Math. Model. Numer. Anal. 47, 57–81 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges-Henri Cottet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cottet, GH. (2018). Semi-Lagrangian Particle Methods for Hyperbolic Equations. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems I. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-319-91545-6_31

Download citation

Publish with us

Policies and ethics