Skip to main content

Jacobian-Free Incomplete Riemann Solvers

  • Conference paper
  • First Online:
Theory, Numerics and Applications of Hyperbolic Problems I (HYP 2016)

Abstract

The purpose of this work is to present some recent developments about incomplete Riemann solvers for general hyperbolic systems. Polynomial Viscosity Matrix (PVM) methods based on internal approximations to the absolute value function are introduced, and they are compared with Chebyshev-based PVM solvers. These solvers only require a bound on the maximum wave speed, so no spectral decomposition is needed. Moreover, they can be written in Jacobian-free form, in which only evaluations of the physical flux are used. This is particularly interesting when considering systems for which the Jacobians involve complex expressions. Some numerical experiments involving the relativistic magnetohydrodynamic equations are presented, both in one and two dimensions. The obtained results are in good agreement with those found in the literature and show that our schemes are robust and accurate, running stable under a satisfactory time step restriction.

This research has been partially supported by the Spanish Government Research projects MTM2015-70490-C2-1R and MTM2011-28043. The numerical computations have been performed at the Laboratory of Numerical Methods of the University of Málaga.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Balsara, Total variation diminishing scheme for relativistic magnetohydrodynamics. Astrophys. J. Suppl. Ser. 132, 83–101 (2001)

    Article  Google Scholar 

  2. D.S. Balsara, D.S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999)

    Article  MathSciNet  Google Scholar 

  3. K. Beckwith, J.M. Stone, A second-order Godunov method for multidimensional relativistic magnetohydrodynamics. Astrophys. J. Suppl. Ser. 193, 6 (2011)

    Article  Google Scholar 

  4. J.U. Brackbill, J.C. Barnes, The effect of nonzero $\nabla \cdot B$ on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426–430 (1980)

    Google Scholar 

  5. M. Brio, C.C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400–422 (1988)

    Article  MathSciNet  Google Scholar 

  6. P. Cargo, G. Gallice, Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws. J. Comput. Phys. 136, 446–466 (1997)

    Article  MathSciNet  Google Scholar 

  7. M.J. Castro Díaz, E.D. Fernández-Nieto, A class of computationally fast first order finite volume solvers: PVM methods. SIAM J. Sci. Comput. 34, A2173–A2196 (2012)

    Article  MathSciNet  Google Scholar 

  8. M.J. Castro, J.M. Gallardo, A. Marquina, A class of incomplete Riemann solvers based on uniform rational approximations to the absolute value function. J. Sci. Comput. 60, 363–389 (2014)

    Article  MathSciNet  Google Scholar 

  9. M.J. Castro, J.M. Gallardo, A. Marquina, Approximate Osher-Solomon schemes for hyperbolic systems. Appl. Math. Comput. 272, 347–368 (2016)

    MathSciNet  Google Scholar 

  10. F. Cordier, P. Degond, A. Kumbaro, Phase appearance or disappearance in two-phase flows. J. Sci. Comput. 58, 115–148 (2014)

    Article  MathSciNet  Google Scholar 

  11. P. Degond, P.F. Peyrard, G. Russo, Ph Villedieu, Polynomial upwind schemes for hyperbolic systems. C. R. Acad. Sci. Paris Sér. I(328), 479–483 (1999)

    Article  MathSciNet  Google Scholar 

  12. L. del Zanna, N. Bucciantini, P. Londrillo, An efficient shock-capturing central-type scheme for multidimensional relativistic flows II. Magnetohydrodynamics. Astronom. Astrophys. 400, 397–413 (2003)

    Article  Google Scholar 

  13. M. Dumbser, E.F. Toro, On universal Osher-type schemes for general nonlinear hyperbolic conservation laws. Commun. Comput. Phys. 10, 635–671 (2011)

    Article  MathSciNet  Google Scholar 

  14. B. Giacomazzo, L. Rezzolla, The exact solution of the Riemann problem in relativistic magnetohydrodynamics. J. Fluid Mech. 562, 223–259 (2006)

    Article  MathSciNet  Google Scholar 

  15. A. Marquina, Local piecewise hyperbolic reconstructions for nonlinear scalar conservation laws. SIAM J. Sci. Comput. 15, 892–915 (1994)

    Article  MathSciNet  Google Scholar 

  16. J.M. Martí, E. Müller, Numerical hydrodynamics in special relativity. Living Rev. Relativ. 6, 7 (2003), http://www.livingreviews.org/lrr-2003-7

  17. S.A. Orszag, C.M. Tang, Small scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90, 129–143 (1979)

    Article  Google Scholar 

  18. S. Osher, F. Solomon, Upwind difference schemes for hyperbolic conservation laws. Math. Comput. 38, 339–374 (1982)

    Article  MathSciNet  Google Scholar 

  19. P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  20. C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1998)

    Article  Google Scholar 

  21. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. (Springer, Berlin, 2009)

    Book  Google Scholar 

  22. M. Torrilhon, Krylov-Riemann solver for large hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 34, A2072–A2091 (2012)

    Article  MathSciNet  Google Scholar 

  23. O. Zanotti, M. Dumbser, A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement. Comput. Phys. Commun. 188, 110–127 (2015)

    Article  MathSciNet  Google Scholar 

  24. O. Zanotti, F. Fambri, M. Dumbser, Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement. Mon. Not. R. Astron. Soc. 452, 3010–3029 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Gallardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castro, M.J., Gallardo, J.M., Marquina, A. (2018). Jacobian-Free Incomplete Riemann Solvers. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems I. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-319-91545-6_24

Download citation

Publish with us

Policies and ethics