Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 33))

  • 365 Accesses

Abstract

The plasmodium of Physarum polycephalum is very sensitive to its environment and reacts to stimuli by its appropriate motions. The sensitive stage as well as the motor stage of these reactions are explained by hydrodynamic processes, based on fluid dynamics, with participating of actin filament networks. This chapter is devoted to actin filament networks as a computation medium. The point is that actin filaments with a participating of many other proteins like myosin are sensitive to outer cellular stimuli (attractants as well as repellents) and they appear and disappear at different places of the cell to change the cell structure, e.g. its shape. Due to assembling and disassembling actin filaments, some unicellular organisms like Amoeba proteus can move in responses to different stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A., Mayne, R.: Actin automata: Phenomenology and localizations. Int. J. Bifurc. Chaos 25(2) (2015). https://doi.org/10.1142/S0218127415500303

    Article  MATH  Google Scholar 

  2. Alonso-Sanz, R., Adamatzky, A.: Actin automata with memory. Int. J. Bifurc. Chaos 26(1) (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Schumann, A.: Toward a computational model of actin filament networks. In: Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016)—Volume 4: BIOSIGNALS, Rome, Italy, 21–23 Feb 2016, pp. 290–297 (2016). https://doi.org/10.5220/0005828902900297

  4. Schumann, A.: On arithmetic functions in actin filament networks. In: 10th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). ACM (2017). https://doi.org/10.4108/eai.22-3-2017.152402

  5. Schumann, A.: Decidable and undecidable arithmetic functions in actin filament networks. J. Phys. D Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/aa9d7b

  6. Siccardi, S., Adamatzky, A.: Actin quantum automata: communication and computation in molecular networks. Nano Comm. Netw. 6(1), 15–27 (2015). https://doi.org/10.1016/j.nancom.2015.01.002

    Article  Google Scholar 

  7. Siccardi, S., Adamatzky, A.: Quantum actin automata and three-valued logics. IEEE J. Emerg. Sel. Topics Circuits Syst. 6(1), 53–61 (2016)

    Article  Google Scholar 

  8. Siccardi, S., Tuszynski, J.A., Adamatzky, A.: Boolean gates on actin filaments. Phys. Lett. A 380(1), 88–97 (2016)

    Article  Google Scholar 

  9. Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Process. Lett. 17(4), 455–467 (2007)

    Article  MathSciNet  Google Scholar 

  10. Adamatzky, A.: Physarum machines: encapsulating reaction-diffusion to compute spanning tree. Naturwisseschaften 94, 975–980 (2007)

    Article  Google Scholar 

  11. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. Series on Nonlinear Science A, World Scientific (2010)

    Google Scholar 

  12. Adamatzky, A.: Slime mould logical gates: exploring ballistic approach. In: Applications, Tools and Techniques on the Road to Exascale Computing, vol. 1, pp. 41–56 (2010)

    Google Scholar 

  13. Adamatzky, A.: Slime mould computing. Int. J. Gen. Syst. 44(3), 277–278 (2015)

    Article  MATH  Google Scholar 

  14. Adamatzky, A.: A would-be nervous system made from a slime mold. Artif. Life 21(1), 73–91 (2015)

    Article  Google Scholar 

  15. Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)

    Article  Google Scholar 

  16. Berzina, T., Dimonte, A., Cifarelli, A., Erokhin, V.: Hybrid slime mould-based system for unconventional computing. Int. J. Gen. Syst. 44(3), 341–353 (2015). https://doi.org/10.1080/03081079.2014.997523

  17. Jones, J., Mayne, R., Adamatzky, A.: Representation of shape mediated by environmental stimuli in Physarum polycephalum and a multi-agent model. JPEDS 32(2), 166–184 (2017)

    Google Scholar 

  18. Jones, J.D., Adamatzky, A.: Towards Physarum binary adders. Biosystems 101(1), 51–58 (2010)

    Article  Google Scholar 

  19. Kalogeiton, V.S., Papadopoulos, D.P., Georgilas, I., Sirakoulis, G.C., Adamatzky, A.: Cellular automaton model of crowd evacuation inspired by slime mould. Int. J. Gen. Syst. 44(3), 354–391 (2015). https://doi.org/10.1080/03081079.2014.997527

    Article  MathSciNet  MATH  Google Scholar 

  20. Mayne, R., Adamatzky, A.: Slime mould foraging behaviour as optically coupled logical operations. Int. J. Gen. Syst. 44(3), 305–313 (2015). https://doi.org/10.1080/03081079.2014.997528

    Article  MathSciNet  MATH  Google Scholar 

  21. Ntinas, V.G., Vourkas, I., Sirakoulis, G.C., Adamatzky, A.: Oscillation-based slime mould electronic circuit model for maze-solving computations. IEEE Trans. Circuits Syst. 64-I(6), 1552–1563 (2017)

    Article  Google Scholar 

  22. Pancerz, K., Schumann, A.: Rough set models of Physarum machines. Int. J. Gen. Syst. 44(3), 314–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schumann, A.: p-adic valued logical calculi in simulations of the slime mould behaviour. J. Appl. Non-Class. Log. 25(2), 125–139 (2015). https://doi.org/10.1080/11663081.2015.1049099

    Article  MathSciNet  Google Scholar 

  24. Schumann, A.: Towards slime mould based computer. New Math. Nat. Comput. 12(2), 97–111 (2016). https://doi.org/10.1142/S1793005716500083

    Article  MathSciNet  MATH  Google Scholar 

  25. Schumann, A., Pancerz, K.: Logics for physarum chips. Studia Humana 5(1), 16–30 (2016). https://doi.org/10.1515/sh-2016-0002

  26. Shirakawa, T., Sato, H., Ishiguro, S.: Constrcution of living cellular automata using the Physarum polycephalum. Int. J. Gen. Syst. 44, 292–304 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shirakawa, T., Yokoyama, K., Yamachiyo, M., Gunji, Y.P., Miyake, Y.: Multi-scaled adaptability in motility and pattern formation of the Physarum plasmodium. Int. J. Bio-Inspir. Comput. 4, 131–138 (2012)

    Article  Google Scholar 

  28. Tsuda, S., Aono, M., Gunji, Y.P.: Robust and emergent Physarum-computing. BioSystems 73, 45–55 (2004)

    Article  Google Scholar 

  29. Whiting, J.G., de Lacy Costello, B.P., Adamatzky, A.: Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems 124, 21–25 (2014)

    Article  Google Scholar 

  30. Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., Schumann, A.: Physarum chip project: growing computers from slime mould. Int. J. Unconv. Comput. 8(4), 319–323 (2012)

    Google Scholar 

  31. Pershin, Y.V., Di Ventra, M.: Memristive and memcapacitive models of Physarum learning. In: Advances in Physarum Machines, pp. 413–422. Springer (2016)

    Chapter  Google Scholar 

  32. Traversa, F.L., Pershin, Y.V., Di Ventra, M.: Memory models of adaptive behavior. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1437–1448 (2013)

    Article  Google Scholar 

  33. Teplov, V.A., Romanovsky, Y.M., Latushkin, O.A.: A continuum model of contraction waves and protoplasm streaming in strands of Physarum polycephalum. Biosystems 24, 269–289 (1991)

    Article  Google Scholar 

  34. Teplov, V.A., Romanovsky, Y.M., Pavlov, D.A., Alt, W.: Auto-oscillatory processes and feedback mechanisms in Physarum plasmodium motility. In: Alt, W., Deutsh, A., Dunn, G. (eds.) Dynamics of Cell and Tissue Motion. Burkhauser, Basel, Switzerland (1997)

    Google Scholar 

  35. Forgacs, G.: On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation. J. Cell Sci. 108, 2131–2143 (1995)

    Google Scholar 

  36. Mayne, R., Adamatzky, A., Jones, J.: On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum. Commun. Integr. Biol. 8(4), e1059007 (2015)

    Article  Google Scholar 

  37. Hameroff, S., Penrose, R.: Consciousness in the universe: a review of the Orch OR theory. Phys. Life Rev. 11, 39–78 (2014)

    Article  Google Scholar 

  38. Maly, I.V., Borisy, G.G.: Self-organization of a propulsive actin network as an evolutionary process. Proc. Nat. Acad. Sci. U.S.A. 98(20), 11324–11329 (2001)

    Article  Google Scholar 

  39. Furukawa, R., Kundra, R., Fechheimer, M.: Formation of liquid crystals from actin filaments. Biochemistry 32, 12346–12352 (1993)

    Article  Google Scholar 

  40. Steinmetz, M., Goldie, K., Aebi, U.: A correlative analysis of actin filament assembly, structure, and dynamics. J. Cell Biol. 138, 559–574 (1997)

    Article  Google Scholar 

  41. Swezey, R., Somero, G.: Polymerization thermodynamics and structural stabilities of skeletal muscle actins from vertebrates adapted to different temperatures and hydrostatic pressures. Biochemistry 21, 4496–4503 (1982)

    Article  Google Scholar 

  42. Evans, E.: New physical concepts for cell amoeboid motion. Biophys. J. 64, 1306–1322 (1993)

    Article  Google Scholar 

  43. Fackler, O.T., Grosse, R.: Cell motility through plasma membrane blebbing. J. Cell Biol. 181, 879–884 (2008)

    Article  Google Scholar 

  44. Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)

    Article  Google Scholar 

  45. Furuhashi, K., Ishigami, M., Suzuki, M., Titani, K.: Dry stress-induced phosphorylation of Physarum actin. Biochem. Biophys. Res. Commun. 242, 653–658 (1998)

    Article  Google Scholar 

  46. Nakagakia, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophys. Chem. 84, 195–204 (2000)

    Article  Google Scholar 

  47. Carlier, M.F.: Actin: protein structure and filament dynamics. J. Biol. Chem. 266, 1–4 (1991)

    Google Scholar 

  48. Carlier, M.F., Pantaloni, D.: Control of actin dynamics in cell motility. J. Mol. Biol. 269(4), 459–467 (1997)

    Article  Google Scholar 

  49. Egelman, E.H.: The structure of f-actin. J. Muscle Res. Cell Motil. 6(2), 129–151 (1985)

    Article  Google Scholar 

  50. Etienne-Manneville, S.: Actin and microtubules in cell motility: which one is in control? Traffic 5(7), 470–477 (2004)

    Article  Google Scholar 

  51. Hill, T.L.: Microfilament or microtubule assembly or disassembly against a force. Proc. Natl. Acad. Sci. U.S.A. 78(9), 5613–5617 (1981)

    Article  Google Scholar 

  52. Le Clainche, C., Carlier, M.: Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev. 88(2), 489–513 (2008)

    Article  Google Scholar 

  53. McGough, A.: F-actin-binding proteins. Curr. Opin. Struct. Biol. 8(2), 166–176 (1998)

    Article  Google Scholar 

  54. Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophys. J. 71(6), 3030–3045 (1996)

    Article  Google Scholar 

  55. Mooseker, M.S., Tilney, L.G.: Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J. Cell Biol. 67(3), 725–743 (1975)

    Article  Google Scholar 

  56. Pollard, T.D., Cooper, J.A.: Actin, a central player in cell shape and movement. Science 326(5957), 1208–1212 (2009)

    Article  Google Scholar 

  57. Van Haastert, P.J., Devreotes, P.N.: Chemotaxis: signalling the way forward. Nat. Rev. Mol. Cell Biol. 5, 626–634 (2004)

    Article  Google Scholar 

  58. Holmes, K., Popp, D., Gebhard, W., Kabsch, W.: Atomic model of the actin filament. Nature 347, 44–49 (1990)

    Article  Google Scholar 

  59. Hu, J., Matzavinos, A., Othmer, H.G.: A theoretical approach to actin filament dynamics. J. Stat. Phys. 128(1–2), 111–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Hu, K., Ji, L., Applegate, K.T., Danuser, G., Waterman-Storer, C.M.: Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007)

    Article  Google Scholar 

  61. Tobacman, L.S., Korn, E.D.: The kinetics of actin nucleation and polymerization. J. Biol. Chem. 258, 3207–3214 (1983)

    Google Scholar 

  62. Wegner, A.: Head to tail polymerization of actin. J. Mol. Biol. 108, 139–150 (1976)

    Article  Google Scholar 

  63. Wegner, A., Engel, J.: Kinetics of the cooperative association of actin to actin filaments. Biophys. Chem. 3, 215–225 (1975)

    Article  Google Scholar 

  64. Coppin, C., Leavis, P.: Quantitation of liquid-crystaline ordering in f-actin solutions. Biophysics 63, 794–807 (1992)

    Google Scholar 

  65. Galbraith, C.G., Yamada, K.M., Galbraith, J.A.: Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007)

    Article  Google Scholar 

  66. Goldmann, W.H., Guttenberg, Z., Tang, J.X., Kroy, K., Isenberg, G., Ezzell, R.M.: Analysis of the f-actin binding fragments of vinculin using stopped-flow and dynamic lightscattering measurements. Eur. J. Biochem. 254, 413–419 (1998)

    Article  Google Scholar 

  67. Kabsch, W., Holmes, K.C.: The actin fold. FASEB J. 9, 167–174 (1995)

    Article  Google Scholar 

  68. Korn, E.D., Carlier, M., Pantaloni, D.: Actin polymerization and ATP hydrolysis. Science 238, 638–644 (1987)

    Article  Google Scholar 

  69. Coluccio, L.M., Tilney, L.G.: Under physiological conditions actin disassembles slowly from the nonpreferred end of an actin filament. J. Cell Biol. 97, 1629–1634 (1983)

    Article  Google Scholar 

  70. Svitkina, T.M., Borisy, G.G.: Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999)

    Article  Google Scholar 

  71. Carlier, M.: Role of nucleotide hydrolysis in the dynamics of actin filaments and mictrotubules. Int. Rev. Cytol. 115, 139–170 (1989)

    Article  Google Scholar 

  72. Carlier, M.F., Valentin, R.C., Combeau, C., Fievez, S., Pantoloni, D.: Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin. In: Advances in Experimental Medicine and Biology, vol. 358, pp. 71–81 (1994)

    Google Scholar 

  73. Chhabra, E.S., Higgs, H.N.: The many faces of actin: matching assembly factors with cellular structures. Nat. Cell Biol. 9, 1110–1121 (2007)

    Article  Google Scholar 

  74. Choi, C.K., Vicente-Manzanares, M., Zareno, J., Whitmore, L.A., Mogilner, A., Horwitz, A.R.: Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol 10, 1039–1050 (2008)

    Article  Google Scholar 

  75. Meyer, R., Aebi, U.: Bundling of actin filaments by \(\alpha \)-actinin depends on its molecular length. J. Cell Biol. 110, 2013–2024 (1990)

    Article  Google Scholar 

  76. Basaraba, R.J., Byerly, A.N., Stewart, G.C., Mosier, D.A., Fenwick, B.W., Chengappa, M.M., Laegreid, W.W.: Actin enhances the haemolytic activity of escherichia coli. Microbiology 144(7), 1845–1852 (1998)

    Article  Google Scholar 

  77. Iwasa, J.H., Mullins, R.D.: Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr. Biol. 17, 395–406 (2007)

    Article  Google Scholar 

  78. Balaban, N.Q., Schwarz, U.S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L.: Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466–472 (2001)

    Article  Google Scholar 

  79. Brown, C.M., Hebert, B., Kolin, D.L., Zareno, J., Whitmore, L., Horwitz, A.R., Wiseman, P.W.: Probing the integrin-actin linkage using high-resolution protein velocity mapping. J. Cell Sci. 119, 5204–5214 (2006)

    Article  Google Scholar 

  80. Calderwood, D.A., Shattil, S.J., Ginsberg, M.H.: Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607–22610 (2000)

    Article  Google Scholar 

  81. Guo, W.H., Wang, Y.L.: Retrograde fluxes of focal adhesion proteins in response to cell migration and mechanical signals. Mol. Biol. Cell 18, 4519–4527 (2007)

    Article  Google Scholar 

  82. Condeelis, J.: Life at the leading edge: the formation of cell protrusions. Annu. Rev. Cell Biol. 9, 411–444 (1993)

    Article  Google Scholar 

  83. Mattila, P.K., Lappalainen, P.: Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454 (2008)

    Article  Google Scholar 

  84. Wachsstock, D.H., Schwarz, W.H., Pollard, T.D.: Cross-linker dynamics determine the mechanical properties of actin gels. Biophys. J. 66, 801–809 (1994)

    Article  Google Scholar 

  85. Elson, E.L.: Cellular mechanics as an indicator of cytoskeletal structure and function. Annu. Rev. Biophys. Chem. 17, 397–430 (1988)

    Article  Google Scholar 

  86. Isambert, H., Venier, P., Maggs, A.C., Fattoum, A., Kassab, R., Pantaloni, D., Carlier, M.F.: Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J. Biol. Chem. 270(11), 437–44 (1995)

    Google Scholar 

  87. Pollard, T.D.: Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007)

    Article  Google Scholar 

  88. Yoshigi, M., Hoffman, L.M., Jensen, C.C., Yost, H.J., Beckerle, M.C.: Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171, 209–215 (2005)

    Article  Google Scholar 

  89. Vicente-Manzanares, M., Zareno, J., Whitmore, L., Choi, C.K., Horwitz, A.F.: Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176, 573–580 (2007)

    Article  Google Scholar 

  90. Kas, J., Strey, H., Tang, J.X., Finger, D., Ezzell, R., Sackmann, E., Janmey, P.A.: F-actin, a model polymer for semiflexible chains in dilute, semidilute and liquid crystalline solutions. Biophys. J. 70, 609–625 (1995)

    Article  Google Scholar 

  91. Oosawa, F.: The flexibility of f-actin. Biophys. Chem. 11, 443–446 (1980)

    Article  Google Scholar 

  92. Asakura, S., Taniguchi, M., Oosawa, F.: Mechano-chemical behavior of f-actin. J. Mol. Biol. 7, 55–69 (1963)

    Article  Google Scholar 

  93. Hotulainen, P., Lappalainen, P.: Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006)

    Article  Google Scholar 

  94. Janmey, P.A., Hvidt, S., Kas, J., Lerche, D., Maggs, A., Sackmann, E., Schliwa, M., Stossel, T.P.: The mechanical properties of actin gels. Elastic modulus and filament motions. J. Biol. Chem. 269(32), 503–13 (1994)

    Google Scholar 

  95. Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., Horwitz, A.R.: Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)

    Article  Google Scholar 

  96. ben Avraham, D., Tirion, M.: Dynamic and elastic properties of f-actin: a normal-modes analysis. Biophys. J. 68(4), 1231–1245 (1995)

    Google Scholar 

  97. Higuchi, H., Yanagida, T., Goldman, Y.E.: Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophys. J. 69, 1000–1010 (1995)

    Article  Google Scholar 

  98. Jen, C., McIntire, L., Bryan, J.: The viscoelastic properties of actin solutions. Arch. Biochem. Biophys. 216, 126–132 (1982)

    Article  Google Scholar 

  99. Xu, J.Y., Schwarz, W.H., Kas, J.A., Stossel, T.P., Janmey, P.A., Pollard, T.D.: Mechanical properties of actin filament networks depend on preparation, polymerization conditions, and storage of actin monomers. Biophys. J. 74, 2731–2740 (1998)

    Article  Google Scholar 

  100. Gimona, M., Mital, R.: The single CH domain of calponin is neither sufficient nor necessary for f-actin binding. J. Cell Sci. 111(Pt 13), 1813–21 (1998)

    Google Scholar 

  101. Moore, P.B., Huxley, H.E., DeRosier, D.J.: Three-dimensional reconstruction of f-actin, thin filaments and decorated thin filaments. J. Mol. Biol. 50(2), 279–295 (1970)

    Article  Google Scholar 

  102. Schumann, A., Pancerz, K.: p-adic computation with Physarum. In: Adamatzky, A. (ed.) Advances in Physarum Machines: Sensing and Computing with Slime Mould. Emergence, Complexity and Computation, vol. 21, pp. 619–649. Springer International Publishing (2016)

    Chapter  Google Scholar 

  103. Zadeh, L.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  104. Kornai, A.: Euclidean automata. In: Waser, M. (ed.) Proceedings of the AAAI Spring Symposium Implementing Selves with Safe Motivational Systems and Self-Improvement, pp. 25–30. AAAI Press (2014)

    Google Scholar 

  105. Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry III. Fuzzy Sets Syst. 283, 83–107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  106. Schumann, A.: Conventional and unconventional reversible logic gates on Physarum polycephalum. Int. J. Parallel, Emerg. Distrib. Syst. 32(2), 218–231 (2017). https://doi.org/10.1080/17445760.2015.1068775

  107. Toffoli, T.: Reversible computing. Tech. memo mit/lcs/tm-151. MIT (1980)

    Google Scholar 

  108. Jones, J.D.: Towards lateral inhibition and collective perception in unorganised non-neural systems. In: Pancerz, K., Zaitseva, E. (eds.) Computational Intelligence, Medicine and Biology: Selected Links. Springer (2015)

    Google Scholar 

  109. Schumann, A., Woleński, J.: Two squares of oppositions and their applications in pairwise comparisons analysis. Fundam. Inform. 144(3–4), 241–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  110. Dimonte, A., Berzina, T., Pavesi, M., Erokhin, V.: Hysteresis loop and cross-talk of organic memristive devices. Microelectron. J. 45(11), 1396–1400 (2014). https://doi.org/10.1016/j.mejo.2014.09.009

    Article  Google Scholar 

  111. Erokhin, V.: On the learning of stochastic networks of organic memristive devices. Int. J. Unconv. Comput. 9(3–4), 303–310 (2013)

    Google Scholar 

  112. Erokhin, V., Howard, G.D., Adamatzky, A.: Organic memristor devices for logic elements with memory. Int. J. Bifurc. Chaos 22(11) (2012). https://doi.org/10.1142/S0218127412502835

    Article  MathSciNet  Google Scholar 

  113. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926

    Google Scholar 

  114. Saigusa, T., Tero, A., Nakagak, T., Kuramoto, Y.: Amoebae anticipate periodic events. Phys. Rev. Lett. 100(1), 018101 (2008)

    Article  Google Scholar 

  115. Shirakawa, T., Gunji, Y.P., Miyake, Y.: An associative learning experiment using the plasmodium of Physarum polycephalum. Nano Commun. Netw. 2, 99–105 (2011)

    Article  Google Scholar 

  116. Schumann, A.: Towards context-based concurrent formal theories. Parallel Process. Lett. 25, 1540008 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  117. Taylor, B., Adamatzky, A., Greenman, J., Ieropoulos, I.: Physarum polycephalum: towards a biological controller. Biosystems 127, 42–46 (2015)

    Article  Google Scholar 

  118. Whiting, J.G.H., de Lacy Costello, B., Adamatzky, A.: Sensory fusion in physarum polycephalum and implementing multi-sensory functional computation. Biosystems 119, 45–52 (2014)

    Article  Google Scholar 

  119. Savtchenko, L.P., Poo, M.M., Rusakov, D.A.: Electrodiffusion phenomena in neuroscience: a neglected companion. Nat. Rev. Neurosci. 18(10), 598–612 (2017)

    Article  Google Scholar 

  120. Siccardi, S., Adamatzky, A.: Logical gates implemented by solitons at the junctions between one-dimensional lattices. Int. J. Bifurc. Chaos 26(6), 1650,107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Schumann .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schumann, A. (2019). Actin Filament Networks. In: Behaviourism in Studying Swarms: Logical Models of Sensing and Motoring. Emergence, Complexity and Computation, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-91542-5_2

Download citation

Publish with us

Policies and ethics