Skip to main content

Our Island Earth: Granite Here, Granite Everywhere?

  • Chapter
  • First Online:
Granite Skyscrapers

Part of the book series: Springer Praxis Books ((POPULAR))

  • 625 Accesses

Abstract

Even at close range within the Solar System, different terrestrial bodies display a broad variety of tectonic and volcanic features. These reflect the manner in which each body has cooled and shed its heat to the surrounding universe. Despite their differences, other bodies such as Io and Venus provide clues to how the Earth behaved in the past and how it will behave in the future. Moreover, each world illustrates how different planets (and possibly life) beyond the Solar System may evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Boninite is an unusual silica and magnesium-rich rock formed in the earliest stages of subduction-related magmatism. The example from the Lau basin is the only identified contemporary terrestrial eruption of its kind.

References

Io

The Moon

  • Compositional evidence for an impact origin of the Moon’s Procellarum basin. (2012) Ryosuke Nakamura, Satoru Yamamoto, Tsuneo Matsunaga, Yoshiaki Ishihara, Tomokatsu Morota, Takahiro Hiroi, Hiroshi Takeda, Yoshiko Ogawa, Yasuhiro Yokota, Naru Hirata, Makiko Ohtake & Kazuto Saiki, Nature Geoscience 5, 775–778 (2012) doi:https://doi.org/10.1038/ngeo1614

    Article  Google Scholar 

  • Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. (2014) Jeffrey C. Andrews-Hanna, Jonathan Besserer, James W. Head III, Carly J. A. Howett, Walter S. Kiefer, Paul J. Lucey, Patrick J. McGovern, H. Jay Melosh, Gregory A. Neumann, Roger J. Phillips, Paul M. Schenk, David E. Smith, Sean C. Solomon, & Maria T. Zuber, Nature 514, 68–71; doi:https://doi.org/10.1038/nature13697

    Article  Google Scholar 

  • Highly Silicic Compositions on the Moon. (2010) Timothy D. Glotch, Paul G. Lucey, Joshua L. Bandfield, Benjamin T. Greenhagen, Ian R. Thomas, Richard C. Elphic, Neil Bowles, Michael B. Wyatt, Carlton C. Allen, Kerri Donaldson Hanna, David A. Paige Science 329, 1510–1513;DOI: https://doi.org/10.1126/science.1192148

    Article  Google Scholar 

  • The density and porosity of lunar rocks. (2012) Walter S. Kiefer, Robert J. Macke, Daniel T. Britt, Anthony J. Irving, and Guy J. Consolmagno Geophysical Research Letters, 39, L07201, doi:https://doi.org/10.1029/2012GL051319, 2012, Available at: http://onlinelibrary.wiley.com/doi/10.1029/2012GL051319/pdf

    Article  Google Scholar 

  • Major lunar crustal terranes: Surface expressions and crust-mantle origins. (2000) Bradley L. Jolliff, Jeffrey J. Gillis, Larry A. Haskin, Randy L. Korotev, Mark A. Wieczorek, Journal of Geophysical Research, 105, no. E2, 4197–4216; DOI: https://doi.org/10.1029/1999JE001103

    Article  Google Scholar 

  • The lunar Gruithuisen silicic extrusive domes: Topographic configuration, morphology, ages, and internal structure. (2016) M.A. Ivanov, J.W. Head, A. Bystrov, Icarus, 273, 262–283; https://doi.org/10.1016/j.icarus.2015.12.015

    Article  Google Scholar 

  • Lunar true polar wander inferred from polar hydrogen. (2016) Matt A. Siegler, (Planetary Science Institute, Tucson, Arizona) R. S. Miller, J. T. Keane, M. Laneuville, D. A. Paige, I. Matsuyama, D. J. Lawrence, A. Crotts & M. J. Poston, Nature 531, 480–484 (24 March 2016) doi:https://doi.org/10.1038/nature17166

    Article  Google Scholar 

Ceres

  • Cryovolcanism on Ceres. (2016) O. Ruesch, T. Platz, P. Schenk, L. A. McFadden, J. C. Castillo-Rogez, L. C. Quick, S. Byrne, F. Preusker, D. P. O’Brien, N. Schmedemann, D. A. Williams, J.-Y. Li, M. T. Bland, H. Hiesinger, T. Kneissl, A. Neesemann, M. Schaefer, J. H. Pasckert, B. E. Schmidt, D. L. Buczkowski, M. V. Sykes, A. Nathues, T. Roatsch, M. Hoffmann, C. A. Raymond, C. T. Russell, Science, 353, no. 6303, DOI: https://doi.org/10.1126/science.aaf4286

Mars

Venus

  • Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data (2008), George L. Hashimoto, Maarten Roos-Serote, Seiji Sugita, Martha S. Gilmore, Lucas W. Kamp, Robert W. Carlson, and Kevin H. Baines; Journal of Geophysical Research, Vol. 113, E00B24, doi:https://doi.org/10.1029/2008JE003134.

    Article  Google Scholar 

  • Pioneer Venus Radar results altimetry and surface properties. (1980) Gordon H. Pettengill, Eric Eliason, Peter G. Ford, George B. Loriot, Harold Masursky, George E. McGill; Geophysical Research Letters 85, no. A13, 8261–8270; DOI: https://doi.org/10.1029/JA085iA13p08261

    Article  Google Scholar 

  • Active submarine eruption of boninite in the northeastern Lau Basin. (2011) Joseph A. Resing, Kenneth H. Rubin, Robert W. Embley, John E. Lupton, Edward T. Baker, Robert P. Dziak, Tamara Baumberger, Marvin D. Lilley, Julie A. Huber, Timothy M. Shank, David A. Butterfield, David A. Clague, Nicole S. Keller, Susan G. Merle, Nathaniel J. Buck, Peter J. Michael, Adam Soule, David W. Caress, Sharon L. Walker, Richard Davis, James P. Cowen, Anna-Louise Reysenbach, Hans Thomas; Nature Geoscience 4, 799–806; doi:https://doi.org/10.1038/ngeo1275

    Article  Google Scholar 

  • Recent Hot-Spot Volcanism on Venus from VIRTIS Emissivity Data. (2010) Smrekar, Suzanne E.; Stofan, Ellen R.; Mueller, Nils; Treiman, Allan; Elkins-Tanton, Linda; Helbert, Joern; Piccioni, Giuseppe; Drossart, Pierre, Science, 328, Issue 5978, pp. 605–608; doi:https://doi.org/10.1126/science.1186785

    Article  Google Scholar 

  • Idunn Mons on Venus: Location and extent of recently active lava flows. (2017); Müller, Nils; Helbert, Jörn; D’Amore, Mario Planetary and Space Science, Vol. 136, p. 25–33; doi: https://doi.org/10.1016/j.pss.2016.12.002

    Article  Google Scholar 

  • Variations of sulfur dioxide at the cloud top of Venus’s dynamic atmosphere. (2013) Emmanuel Marcq, Jean-Loup Bertaux, Franck Montmessin & Denis Belyaev, Nature Geoscience 6, 25–28 (2013) doi:https://doi.org/10.1038/ngeo1650

    Article  Google Scholar 

  • Active volcanism on Venus in the Ganiki Chasma rift zone. (2015) E. V. Shalygin, W. J. Markiewicz, A. T. Basilevsky, D. V. Titov, N. I. Ignatiev, Geophysical Research Letters 42, Issue 12, 4762–4769; DOI: https://doi.org/10.1002/2015GL064088

    Article  Google Scholar 

  • The four arachnoid groups of venus. (2002) Kostama, V-P. Available at: https://www.lpi.usra.edu/meetings/lpsc2002/pdf/1115.pdf

  • Characteristics of arachnoids from Magellan data. (1993) C.B. Dawson and L.S. Crumpler. Available at: https://www.lpi.usra.edu/meetings/lpsc1993/pdf/1193.pdf

  • Novae on Venus: Geology, classification, and evolution. (2003) Anton S. Krassilnikov and James W. Head, Journal of Geophysical Research, 108, (E9), 5108–5119, doi:https://doi.org/10.1029/2002JE001983,

    Article  Google Scholar 

  • Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data. (2008) George L. Hashimoto, Maarten Roos-Serote, Seiji Sugita, Martha S. Gilmore, Lucas W. Kamp, Robert W. Carlson, and Kevin H. Baines, Journal of Geophysical Research, 113, E00B24, doi:https://doi.org/10.1029/2008JE003134,

  • Geologic interpretation of the near-infrared images of the surface taken at the Venus Monitoring Camera, Venus Express (2012) A.T. Basilevsky, E.V. Shalygin, D.V. Titov, W.J. Markiewicz, F. Scholten Th. Roatsch, M.A. Kreslavsky, L.V. Moroz, N.I. Ignatiev, B. Fiethe, B. Osterloh, H. Michalik, Icarus, 217, 434–450. doi: https://doi.org/10.1016/j.icarus.2011.11.03

    Article  Google Scholar 

  • Styles of tectonic deformation on Venus: Analysis of Veneras I5 and 16 data. (1986) Basilevsky, A. T., A. A. Pronin, L. B. Ronca, V. P. Kryuchkov, A. L. Sukhanov, and M. S. Markov, 1986, J. Geophys. Res., vol. 91, p. D399-D411.

    Article  Google Scholar 

  • Mantle flow tectonics and a ductile lower crust: Implications for the formation of large-scale features on Venus. (1990) Bindschadler, D. L., and E. M. Parmentier, J. Geophys. Res. 95, 21329–21344.

    Article  Google Scholar 

  • Magellan observations of Alpha Regio: Implications for formation of complex ridged terrains on Venus. (1992) Bindschadler, D. L., A. de Charon, K. K. Beratan, S. E. Smrekar, and J. W. Head, 1992b, J. Geophys. Res., 97, 13563–13577.

    Article  Google Scholar 

  • Orogenic belts on Venus. (1986) Crumpler, L. C., J. W. Head, and D. B. Campbell, Geology, vol. 14, p. 1031–1034.

    Article  Google Scholar 

  • Blob tectonics: A prediction of Western Aphrodite Terra, Venus. (1990) Herrick, R. R., and R. J. Phillips, Geophys. Res. Lett., 17, 2129–2132.

    Article  Google Scholar 

  • Styles of deformation in Ishtar Terra and their implications. (1992) Kaula, W. M., D. L. Bindschadler, R. E. Grimm, V. L. Hansen, K. M. Roberts, and S. E. Smrekar, 1992, J. Geophys. Res. 97, 16085–16120.

    Article  Google Scholar 

  • Pioneer Venus radar results: Geology from images and altimetry. (1980) Masursky, H., E. Eliason, P. G. Ford, G. E. McGill, G. H. Pettengill, G. G. Schaber, and G. Schubert, J. Geophys. Res. 85, 8232–8260.

    Article  Google Scholar 

  • Are tesserae the outcrops of feldspathic crust on Venus? (1988) Nikolayeva, O. V., A. A. Pronin, A. T. Basilevsky, M. A. Ivanov, and M. A. Kreslavsky, 1988, (abstract), LPSC XIX, 864–865.

    Google Scholar 

  • Geology and structure of Beta Regio, Venus: Results from Arecibo radar imaging. (1991) Senske, D. A., J. W. Head, E. R. Stofan, and D. B. Campbell, Geophys. Res. Lett.,18, 1159–1162.

    Article  Google Scholar 

  • Gravitational spreading of high terrain in Ishtar Terra, Venus. (1992) Smrekar, S. E., and S. C. Solomon, J. Geophys. Res., vol. 97, p. 16121–16148.

    Article  Google Scholar 

  • Venus banded terrain: Tectonic models for band formation and their relationship to lithospheric thermal structure. (1984) Solomon, S. C., and J. W. Head, J. Geophys. Res., 89, 6885–6897.

    Article  Google Scholar 

  • Venus tectonics: Initial analysis from Magellan. (1991) Solomon, S. C., J. W. Head, W. M. Kaula, D. McKenzie, B. Parsons, R. J. Phillips, G. Schubert, M. Talwani, Science, 252, 297–312.

    Article  Google Scholar 

  • Venus tectonics: An overview of Magellan observations. (1992) Solomon, S. C., S. E. Smrekar, D. L. Bindschadler, R. E. Grimm, W. M. Kaula, G. E. McGill, R. J. Phillips, R. S. Saunders, G. Schubert, S. W. Squyres, and E. R. Stofan, J. Geophys. Res. 97, 13199–13255.

    Article  Google Scholar 

  • Critical taper wedge mechanics of fold-and-thrust belts on Venus: Initial results from Magellan. (1992) Suppe, J., and C. Connors, J. Geophys. Res., 97, 13545–13561.

    Article  Google Scholar 

  • Wrinkle ridge assemblages on the terrestrial planets. (1998) Watters, T. R., J. Geophys. Research, 93, 10236 10254.

    Article  Google Scholar 

  • Plains tectonism on Venus. (1992) Squyres, S. W., D. G. Jankowski, M. Simons, S. C. Solomon, B. H. Hagar, G. E. McGill, J. Geophys. Res., vol. 97, p. 13579–13599. https://authors.library.caltech.edu/44276/1/jgre82.pdf

    Article  Google Scholar 

  • Coronae on Venus: Morphology and distribution. (1990) Pronin, A. A., and E. R. Stofan, Icarus, 87, 452474.

    Article  Google Scholar 

  • Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. (2014) Gerya T, Earth and Planetary Science Letters, 391, 183–192, DOI: https://doi.org/10.1016/j.epsl.2014.02.005

    Article  Google Scholar 

  • The morphology and evolution of coronae on Venus (1992) Squyres, S. W., D. M. Janes, G. Baer, D. L. Bindschadler, G. Schubert, V. L. Sharpton, and E. R. Stofan, J. Geophys. Res., 97, 13611–13634.

    Google Scholar 

  • Global distribution and characteristics of coronae and related features on Venus: Implications for origin and relation to mantle processes. (1992) Stofan, E. R., V. L. Sharpton, G. Schubert, G. Baer, D. L. Bindschadler, D. M. Janes, and S. W. Squyres, J. Geophys. Res., 97, 13347–13378.

    Article  Google Scholar 

  • Global distribution and characteristics of coronae and related features on Venus: Implications for origin and relation to mantle processes. (1992) Ellen R. Stofan, Virgil L. Sharpton, Gerald Schubert, Gidon Baer, Duane L. Bindschadler, Daniel M. Janes, Steven W. Squyres

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevenson, D.S. (2018). Our Island Earth: Granite Here, Granite Everywhere?. In: Granite Skyscrapers. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-91503-6_7

Download citation

Publish with us

Policies and ethics