Skip to main content

The Evolution of Modern Continents

  • Chapter
  • First Online:
  • 637 Accesses

Part of the book series: Springer Praxis Books ((POPULAR))

Abstract

In Chapter 2, we looked at the formation of continental crust in the Hadean and Archaean eras. This most likely involved the ascent of hot mantle plumes. In the earliest Hadean era, these made thick basaltic plateau that gradually, and partially, melted at their bases to produce TTGs and lots of komatiite and basalt: greenstone belts. An alternative model, involving the stacking up and partial melting of blocks of basaltic-komatiitic crust, is shown in Fig. 3.1. While it is unlikely to have produced the majority of the early continents, this process could have played a role in areas where mantle motion carried young continental fragments around the surface of the young Earth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    “Nearly” in this context only means that there are no kimberlites younger than 80 million years, not that such diamonds are not currently forming beneath the continental crust.

References

Archaean and Hadean Tectonics

  • Heat-pipe Earth. (2013) William B. Moore and A. Alexander G. Webb; Nature, 501, 501–505; doi:https://doi.org/10.1038/nature12473

  • Early Archaean crustal evolution: evidence from ~3.5 billion year old greenstone successions in the Pilgangoora Belt, Pilbara Craton, Australia. (2001) Green M., Available at: https://ses.library.usyd.edu.au/bitstream/2123/505/2/adt-NU20030623.11023101front.pdf

  • Low heat flow inferred from 4 Gyr zircons suggests Hadean plate boundary interactions. (2008) Michelle Hopkins, T. Mark Harrison and Craig E. Manning, Nature, 456, 493–496; doi:https://doi.org/10.1038/nature07465

  • Spreading continents kick-started plate tectonics. (2014) Patrice F. Rey, Nicolas Coltice & Nicolas Flament; Nature, 513, 405–408; doi: https://doi.org/10.1038/nature13728

  • Continent formation through time. (2014) Nick M. W. Roberts, Martin J. Van Kranendonk, Stephen Parman and Peter D. Clift. From: Roberts, N. M. W., Van Kranendonk, M., Parman, S., Shirey, S. & Clift, P. D. (eds) 2015. Geological Society, London, Special Publications, 389, 1–16.

    Google Scholar 

  • The growth of the continental crust: Constraints from zircon Hf-isotope data. (2010) E.A. Belousova, Y.A. Kostitsyn, W.L. Griffin, G.C. Begg, S.Y. O'Reilly, N.J. Pearson, Lithos, 119, (3–4), 457–466; doi https://doi.org/10.1144/SP389.13

  • Evolution of the Archaean crust by delamination and shallow subduction. (2003) Stephen F. Foley, Stephan Buhre and Dorrit E. Jacob, Nature 421, 249–252

    Google Scholar 

  • Late Archean Quetico accretionary complex, Superior Province, Canada. (1989) Percival J A, Williams H R, Geology, 17, 23–25

    Google Scholar 

  • Polat A, Kerrich R (2001) Geodynamic processes, continental growth, and mantle evolution recorded in late Archean greenstone belts of the southern Superior Province, Canada. Precambrian Research 112, 5–25

    Article  Google Scholar 

  • Condie K C 1998 Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163, 97–108

    Article  Google Scholar 

  • Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. S. Marchi, W. F. Bottke, L. T. Elkins-Tanton, M. Bierhaus, K. Wuennemann, A. Morbidelli and D. A. Kring, Nature, 511 578–582; doi:https://doi.org/10.1038/nature13539

  • A Matter of Preservation. (2009) Chris Hawkesworth, Peter Cawood, Tony Kemp, Craig Storey, Bruno Dhuime, Science, 323, 49–50

    Google Scholar 

  • Oceanic plateau model for continental crustal growth in the archaean, a case study from the Kostomuksha greenstone belt, NW Baltic Shield. (1998) Puchtel I S, Hofmann A W, Mezger K, Jochum K P, Shchipansky A A, Samsonov A V Earth and Planetary Science Letters 155, 57–74

    Google Scholar 

  • Plate tectonics on the Earth triggered by plume-induced subduction initiation. (2015) T. V. Gerya, R. J. Stern, M. Baes, S. V. Sobolev & S. A. Whattam, Nature, 5 two 7, 221–225; doi:https://doi.org/10.1038/nature15752

  • The onset of interaction between the hydrosphere and oceanic crust, and the origin of the first continental lithosphere. Maarten J. De Wit and Andrew Hynes; From COWARD, M. E & PIES, A. C. (eds), 1995, Early Precambrian Processes, Geological Society Special Publication No. 95, pp. 1–9.

    Google Scholar 

  • Helium isotopic evidence for episodic mantle melting and crustal growth. (2007) S. W. Parman, Nature, 499, 900–903; doi:https://doi.org/10.1038/nature05691

  • Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. (2001) A Polat, R Kerrich, Contributions to Mineralogy and Petrology, 141, 36–52

    Google Scholar 

  • Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: Evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. (1997) Puchtel I S, Haase K M, Hofmann A W, Chauvel C, Kulikov V S, GarbeSchonberg C D, Nemchin A A Geochimica Et Cosmochimica Acta 61, 1205–22

    Google Scholar 

  • Did prolonged two-stage fragmentation of the supercontinent Kenorland lead to arrested orogenesis on the southern margin of the Superior province? (2015) Grant M. Young, Geoscience Frontiers, 6, 419–435; doi: https://doi.org/10.1016/j.gsf.2014.04.003

  • On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? (1998) Maarten J. de Wit, Precambrian Research, 91, 181–226

    Google Scholar 

  • Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. (2000) M G Green, P J Sylvester, R Buick, Tectonophysics 322, 69–88

    Google Scholar 

  • Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics. (2013) Magali Pujol, Bernard Marty, Ray Burgess, Grenville Turner & Pascal Philippot Nature, 498, 87–90; doi:https://doi.org/10.1038/nature12152

The Proterozoic

  • Chapter 5.1 Configuration of Pan-African Orogenic Belts in Southwestern Africa. Developments in Precambrian Geology 16. (2009) Available at: https://www.researchgate.net/publication/251455251; Chapter 51 Configuration of Pan-African Orogenic Belt in Southwestern Africa; doi: https://doi.org/10.1016/S0166-2635(09)01610-7

  • Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: Isotope and trace element constraints. (1999) Puchtel I S, Hofmann A W, Amelin Y V, Garbe-Schonberg C D, Samsonov A V, Schipansky A A Geochimica Et Cosmochimica Acta 63, 3579–95

    Google Scholar 

  • Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. T. Næraa, A. Schersten, M. T. Rosing, A. I. S. Kemp, J. E. Hoffmann, T. F. Kokfelt and M. J. Whitehouse Nature, 485, 627-630

    Google Scholar 

  • The Structural and Geochemical Evolution of the Continental-Crust - Support for the Oceanic Plateau Model of Continental Growth. (1995) Abbott D, Mooney W, Reviews of Geophysics 33, 231-42

    Google Scholar 

  • Paleo-Mesoproterozoic Supercontinents – A Paleomagnetic View. (2012) L.J. Pesonen, S. Mertanen and T. Veikkolainen, Geophysica, 48(1–2), 5–47

    Google Scholar 

  • Continental growth during a 1.9-Ga superplume event. (2002) K C Condie, Journal of Geodynamics 34, 249-64

    Google Scholar 

  • Tectonic model for the Proterozoic growth of North America (2008) Steven J. Whitmeyer and Karl E. Karlstrom Geosphere; three (4); 220–259; doi: https://doi.org/10.1130/GES00055.1

  • What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent. (2012) Joseph G. Meert, Gondwana Research, 21, 987–993, doi:https://doi.org/10.1016/j.gr.2011.12.002

  • Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth. (2012) Birger Rasmussen, Ian R. Fletcher, Andrey Bekker, Janet R. Muhling, Courtney J. Gregory & Alan M. Thorne, Nature, 484, 496-501: doi:https://doi.org/10.1038/nature11021

  • The supercontinent cycle: A retrospective essay. (2014) R. DamianNance, J. BrendanMurphy, M. Santosh, Gondwana Research, 25, (1), Pages 4-29; doi: https://doi.org/10.1016/j.gr.2012.12.026

  • Mantle convection modeling of the supercontinent cycle: Introversion, extroversion, or a combination? (2014) Masaki Yoshida, M. Santosh, Geoscience Frontiers, 5, 77-81; doi: doi:https://doi.org/10.1016/j.gsf.2013.06.002

  • The making and unmaking of a supercontinent: Rodinia revisited. Joseph G. Meerta, Trond H. Torsvik Tectonophysics 375 (2003) 261–288

    Google Scholar 

  • A Neoproterozoic Snowball Earth. (1998) Paul F. Hoffman, Alan J. Kaufman, Galen P. Halverson, Daniel P. Schrag, P. F. Hoffman, G. P. Halverson, D. P. Schrag, Science 281,1342-1344

    Google Scholar 

  • Persistence of a freshwater surface ocean after a snowball Earth. (2017) Jun Yang, Malte F. Jansen, Francis A. Macdonald and Dorian S. Abbot, Geology (2017) 45 (7): 615-618; doi: doi:https://doi.org/10.1130/G38920.1

  • Paleoproterozoic closure of an Australia–Laurentia seaway revealed by megaclasts of an obducted volcanic arc in Yukon, Canada (2015) Derek J. Thorkelson, and John R. Laughton, Gondwana Research 33, 115–133; doi:https://doi.org/10.1016/j.gr.2015.01.004

The Phanerozoic

The Laramides

  • Reconstructing Farallon Plate Subduction Beneath North America Back to the Late Cretaceous. (2008a) Lijun Lijun Liu, Sonja Spasojević and Michael Gurnis, Science 322, 934-938; doi: https://doi.org/10.1126/science.1162921

  • The Canadian Cordillera as a modern analogue of Proterozoic crustal growth. 1991 S D Samson, P J Patchett Australian Journal of Earth Sciences 38, 595–611

    Google Scholar 

  • Intra-oceanic subduction shaped the assembly of Cordilleran North America. (2013) Karin Sigloch and Mitchell G. Mihalynuk, Nature, 496, 50-56; doi:https://doi.org/10.1038/nature12019

  • Structural evolution of a Mesozoic backarc fold-and-thrust belt in the U.S. Cordillera: New evidence from northern Nevada (2002) Sandra J. Wyld, Geological Society of America Bulletin, 114 (11), 1452-1468; doi: https://doi.org/10.1130/0016-7606

  • Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. (2015a) W. Adolph Yonkee, Arlo Brandon Weil, Earth-Science Reviews 150, 531–593 doi:https://doi.org/10.1016/j.earscirev.2015.08.001

  • Formation of new continental crust in Western British Columbia during transpression and transtension. Earth and Planetary Science Letters 249, 29-38

    Google Scholar 

  • Reconstructing Farallon Plate Subduction Beneath North America Back to the Late Cretaceou. (2008b) Lijun Liu, Sonja Spasojević, Michael Gurnis. Science 322, 934-938

    Google Scholar 

  • Regional structure and kinematic history of the Sevier fold-and-thrust belt, central Utah. (2006) Peter G. DeCelles and James C. Coogan GSA Bulletin; 118; (7/8), 841–864; doi: https://doi.org/10.1130/B25759.1;

  • Intra-oceanic subduction shaped the assembly of Cordilleran North America. (2013) Karin Sigloch & Mitchell G. Mihalynu; Nature, 496, 50-56; doi:https://doi.org/10.1038/nature12019

  • P and S wave tomography of the mantle beneath the United States. (2014) Brandon Schmandt and Fan-Chi Lin, Geophys. Res. Lett., 41, 1-14; doi:https://doi.org/10.1002/2014GL061231

  • Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. (2015b) W. Adolph Yonkee, Arlo Brandon Weil, Earth-Science Reviews, 150, 531–593; doi:https://doi.org/10.1016/j.earscirev.2015.08.001

  • Continental accretion and orogeny: from oceanic plateaus to allochthonous terranes. (1981) Z Ben-Avraham, A Nur, D Jones, A Cox, Science, 213, 47-54

    Google Scholar 

  • Lithospheric Buoyancy and Collisional Orogenesis - Subduction of Oceanic Plateaus, Continental Margins, Island Arcs, Spreading Ridges, and Seamounts. (1993) Cloos M Geological Society of America Bulletin 105, 715-37

    Google Scholar 

  • Magmatic growth and batholithic root development in the northern Sierra Nevada, California(2012) M.R. Cecil, G.L. Rotberg, M.N. Ducea, J.B. Saleeby, and G.E. Gehrels Geosphere; 8 (3); 592–606; doi:https://doi.org/10.1130/GES00729.

  • Lithospheric structure in northwestern Canada from Lithoprobe. (2005) Ron M Clowes, Philip TC Hammer, Gabriela Fernández-Viejo and J Kim Welford, Canadian Journal of Earth Sciences, 2005, 42(6): 1277-1293, doi: https://doi.org/10.1139/e04-069

  • An 1800 km cross section of the lithosphere through the northwestern North American plate: lessons from 4.0 billion years of Earth's history. Cook F A, Erdmer P 2005 Canadian Journal of Earth Sciences 42, 1295-311

    Google Scholar 

Pan-African Orogeny and Subsequent History

  • A review of the Pan-African evolution of the Arabian Shield. (2002) Pierre Nehlig, Antonin Genna and Fawzia Asfirane, GeoArabia, 7, (1), 103-124

    Google Scholar 

  • The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. (2009a) G.C. Begg, W.L. Griffin, L.M. Natapov, Suzanne Y. O’Reilly, S.P. Grand, C.J. O’Neill, J.M.A. Hronsky, Y. Poudjom Djomani, C.J. Swain, T. Deen, P. Bowden Geosphere;5 (1);23–50; doi: https://doi.org/10.1130/GES00179.1

  • Lower Crustal Rejuvenation and Growth during Post-Thickening Collapse - Insights from a Crustal Cross-Section through a Variscan Metamorphic Core Complex. (1995) S Costa, P Rey, Geology, 23, 905-08

    Google Scholar 

  • The influence of lithospheric thickness variations on continental evolution. (2011) Dan McKenzie, Keith Priestley, Lithos 102 (2008) 1–11; doi:https://doi.org/10.1016/j.lithos.2007.05.005

  • Pan-African Orogeny. (2004a) A Kröner and R J Stern, Encyclopaedia of Geology, 1, 1-16

    Google Scholar 

  • Pan-African Orogeny (2004b) A Kröner and R J Stern; in Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny. Available at: https://www.utdallas.edu/~rjstern/pdfs/PanAfricanOrogeny.pdf https://doi.org/10.1016/j.gr.2015.01.004

  • The Hoggar swell and volcanism, Tuareg shield, Central Sahara: Intraplate reactivation of Precambrian structures as a result of Alpine convergence. (2006) Jean-Paul Liégeois. www.mantleplumes.org.

  • The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. (2009b) G.C. Begg, W.L. Griffin, L.M. Natapov, Suzanne Y. O’Reilly, S.P. Grand, C.J. O’Neill, J.M.A. Hronsky, Y. Poudjom Djomani, C.J. Swain, T. Deen, P. Bowden, Geosphere; 5(1); 23–50; doi: https://doi.org/10.1130/GES00179.1

  • African lithospheric structure, volcanism, and topography (1989) Lewis D. Ashwal and Kevin Burke, Earth and Planetary Science Letters, 96, 8-14

    Google Scholar 

  • Cenozoic alkaline volcanism of the Atakor massif, Hoggar, Algeria (2007) Abla Azzouni-Sekkal, Bernard Bonin, Amel Benhallou, Rachid Yahiaoui and Jean-Paul Liégeois. GSA Special Papers, Geological Society of America v. 418, 321-340, doi: https://doi.org/10.1130/2007.2418(16)

  • The Saharan Metacraton. (2002) Mohamed G. Abdelsalam, Jean-Paul Liegeois, Robert J. Stern, Journal of African Earth Sciences 34, 119–136; PII: S0899-5362(02)00013-1

    Google Scholar 

  • From plume head to continental lithosphere in the Arabian-Nubian shield. Stein M, Goldstein S L 1996 Nature 382, 773-78

    Article  Google Scholar 

  • Chromatographic metasomatism of the Arabian-Nubian lithosphere. (1997) Stein M, Navon O, Kessel R Earth and Planetary Science Letters 152, 75-91

    Google Scholar 

  • Tracing the plume material in the Arabian-Nubian Shield. Stein M 2003 Precambrian Research 123, 223-34

    Google Scholar 

  • The rise of the asthenopsheric mantle into the Arabian lithosphere and its cosnsequences: heating, melting uplifting. (2006) Stein M, IAVCEI meeting, Guangzhou

    Google Scholar 

Delamination, Plumes and Continental Evolution

  • Thinning and destruction of the cratonic lithosphere: A global perspective. (2014) Fu Yuan Wu, Yi Gang Xu, Ri Xiang Zhu and Guo Wei Zhang Science China, Earth Sciences, 57 (12): 2878–2890; doi: https://doi.org/10.1007/s11430-014-4995-0

  • Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective (2002) Mihai N. Ducea Journal of Geophysical Research, 107 (B11), ECV 15-1–ECV 15-13; doi: https://doi.org/10.1029/2001JB000643

  • Layered lithospheric mantle beneath the Ontong Java plateau: Implications from xenoliths in Alonite, Malaita, Solomon Islands. (2004) I Shigawa, A Shigenori, M Komiya, TJ Petrol 47, 2011-2044

    Google Scholar 

  • Creation and Destruction of Lower Continental-Crust. (1991) R W Kay, S Mahlburgkay, Geologische Rundschau, 80, 259-78

    Google Scholar 

  • The Caribbean–Colombian Cretaceous igneous province: the internal anatomy of an oceanic plateau. In: Large Igneous Provinces; Continental, Oceanic and Planetary Flood Volcanism. (1997) A C Kerr, J Tarney, G F Marriner, A Nivia, A D Saunders, American Geophysical Union Monograph, pp. 45–93

    Google Scholar 

  • Geochemistry and age of the Ontong Java Plateau. In: The Mesozoic Pacific. (1993) Mahoney J J, Storey M, Duncan R A, Spencer K J, Pringle M, Geology, Tectonics, and Volcanism. American Geophysical Union Monograph, 233–61

    Google Scholar 

  • Breakup and early seafloor spreading between India and Antarctica. (2007) Carmen Gaina, R. Dietmar Müller, Belinda Brown, Takemi Ishihara and Sergey Ivanov, Geophys. J. Int. 170, 151–169 doi: https://doi.org/10.1111/j.1365-246X.2007.03450.x

  • Indian and African plate motions driven by the push force of the Réunion plume head. (2011) Steven C. Cande & Dave R. Stegman, Nature, 475,47-52, doi:https://doi.org/10.1038/nature10174

  • The rapid drift of the Indian tectonic plate. (2007) Prakash Kumar, Xiaohui Yuan, M. Ravi Kumar, Rainer Kind, Xueqing Li and R. K. Chadha, Vol 449, 894-897; doi:https://doi.org/10.1038/nature06214

  • Foundering-driven lithospheric melting: The source of central Andean mafic lavas on the Puna Plateau (22°S–27°S) (2015) Kendra E. Murray, Mihai N. Ducea, Lindsay Schoenbohm The Geological Society of America Memoir 212, 139-166.

    Google Scholar 

  • Foundering Lithosphere Imaged Beneath the Southern Sierra Nevada, California, USA. (2004) Oliver S. Boyd, Craig H. Jones, Anne F. Sheehan, Science, 305, 660-662

    Google Scholar 

  • Continuing Colorado plateau uplift by delamination style convective lithospheric downwelling. (2011) A. Levander, B. Schmandt, M. S. Miller, K. Liu, K. E. Karlstrom, R. S. Crow, C.-T. A. Lee and E. D. Humphreys, Nature 472, 461-465; doi:https://doi.org/10.1038/nature10001

  • Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. (2013) Oliver Jagoutz and Mark D. Behn, Nature, 504,131-134; doi:https://doi.org/10.1038/nature12758

  • Lithospheric mantle xenoliths sampled by melts from upwelling asthenosphere: The Quaternary Tasse alkaline basalts of southeastern British Columbia, Canada (2016) Eyal Friedman, Ali Polat, Derek J. Thorkelson, Robert Frei, Gondwana Research 33, 209–230; doi: https://doi.org/10.1016/j.gr.2015.11.005

  • Seismic and Tectonometamorphic Characters of the Lower Continental-Crust in Phanerozoic Areas - a Consequence of Post-Thickening Extension. 1993 P Rey, Tectonics, 12, 580-90

    Google Scholar 

  • Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. (2002) Shan Gao, Roberta L. Rudnick, Richard W. Carlson, William F. McDonough, Yong-Sheng Liu, Hollister L S, Andronicos C L Earth and Planetary Science Letters, 198, 307-322, PII: S0012 - 821 X (02) 0048 9-2

    Google Scholar 

  • Melt Intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalts. (2000) Linda T. Elkins Tanton and Bradford H. Hager, Geophysical Research letters, 27 (23), 3937-3940

    Google Scholar 

  • Spatial Gaps in Arc Volcanism - the Effect of Collision or Subduction of Oceanic Plateaus. (1985) McGeary S, Nur A, Benavraham Z, Tectonophysics 119, 195-221

    Google Scholar 

  • Mantle Plumes and Episodic Crustal Growth. (1994). Stein M, Hofmann A W Nature 372, 63-68

    Google Scholar 

  • Dynamics of continental accretion. (2014) L. Moresi, P. G. Betts, M. S. Miller and R. A. Cayley, Nature, 508, 245–248; doi:https://doi.org/10.1038/nature13033

    Article  Google Scholar 

  • Plate tectonics, damage and inheritance. (2014) David Bercovici and Yanick Ricard, Nature, 508, 513–516; doi:https://doi.org/10.1038/nature13072

Diamonds

  • Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. (2015) Yaakov Weiss, John McNeill, D. Graham Pearson, Geoff M. Nowell and Chris J. Ottley Nature, 524, 339-342; doi:https://doi.org/10.1038/nature14857

  • Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. (2010) Bulanova G.P., Walter M.J., Smith C.B., Kohn S.C., Armstrong L.S., Blundy J., Gobbo L. Contributions to Mineralogy and Petrology, Vol. 160, No. 4, pp. 489–510, doi:https://doi.org/10.1007/s00410-010-0490-6.

  • Microdiamonds—Frontier of ultrahigh-pressure metamorphism: A review. (2012) Dobrzhinetskaya L.F. Gondwana Research, Vol. 21, No. 1, pp. 207–223, doi: https://doi.org/10.1016/j.gr.2011.07.014.

  • Dynamical constraints on kimberlite volcanism. (2006) Sparks R.S.J., Baker L., Brown R.J., Field M., Schumacher J., Stripp G., Walters A. Journal of Volcanology and Geothermal Research, Vol. 155, No. 1–2, pp. 18–48, doi:https://doi.org/10.1016/j.jvolgeores.2006.02.010.

  • A diamond trilogy; superplumes, supercontinents, and supernovae. (1999) Haggerty S.E. Science, Vol. 285, No. 5429, pp. 851–860, https://doi.org/10.1126/science.285.5429.851.

  • Isotopic dating of diamonds. (1999) Pearson D.G., Shirey S.B. In D.D. Lambert and J. Ruiz, Eds., Reviews in Economic Geology: Application of Radiogenic Isotopes to Ore Deposit Research and Exploration. Society of Economic Geologists, pp. 143–171.

    Google Scholar 

  • Diamond formation in the earth’s mantle. (1999) Navon O. Proceedings of the International Kimberlite Conference 7, Vol. 2, pp. 584–604.

    Google Scholar 

  • Integrated models of diamond formation and craton evolution. (2004) Shirey S.B., Richardson S.H., Harris J.W. Lithos, Vol. 77, No. 1–4, pp. 923–944, doi:https://doi.org/10.1016/j.lithos.2004.04.018.

  • Carbon in Charge, Rob L. Evans, Science, 322, 1338-1340

    Google Scholar 

  • Slab melting as a barrier to deep carbon subduction (2016) Andrew R. Thomson, Michael J. Walter, Simon C. Kohn and Richard A. Brooker, Nature, 529, 76-79, doi:https://doi.org/10.1038/nature16174

    Article  Google Scholar 

  • Diamonds and the geology of mantle carbon. (2013) Shirey S.B., Cartigny P., Frost D.J., Keshav S., Nestola F., Nimis P., Pearson D.G., Sobolev N.V., Walter M.J. Reviews in Mineralogy and Geochemistry, Vol. 75, No. 1, pp. 355–421, doi: https://doi.org/10.2138/rmg.2013.75.12.

  • Episodic diamond genesis at Jwaneng, Botswana, and implications for Kaapvaal Craton evolution. (2004) Richardson S.H., Shirey S.B., Harris J.W. Lithos, Vol. 77, Nos. 1–4, pp. 143–154, doi:https://doi.org/10.1016/j.lithos.2004.04.027.

  • Eclogitic diamonds of Proterozoic age from Cretaceous kimberlites. (1990) Richardson S.H., Erlank A.J., Harris J.W., Hart S.R. Nature, Vol. 346, No. 6279, pp. 54–56, doi:https://doi.org/10.1038/346054a0.

  • 40Ar/39Ar laser-probe dating of diamond inclusions from Premier kimberlite. (1989) Phillips D., Onstott T.C., Harris J.W. Nature, Vol. 340, No. 6233, pp. 460–462, doi:https://doi.org/10.1038/340460a0.

  • Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. (2008) Andrew J. Berry, Leonid V. Danyushevsky, Hugh St C. O’Neill, Matt Newville & Stephen R. Sutton, Nature 455, 960-963; doi:https://doi.org/10.1038/nature07377

  • Subduction-driven recycling of continental margin lithosphere. (2014) A. Levander, M. J. Bezada, F. Niu, E. D. Humphreys, I. Palomeras, S. M. Thurner, J. Masy, M. Schmitz, J. Gallart, R. Carbonell and M. S. Miller, Nature, 515, 253-256, doi:https://doi.org/10.1038/nature13878

  • Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites (2009) T. P. Fischer, P. Burnard, B. Marty, D. R. Hilton, E. Füri, F. Palhol, Z. D. Sharp and F. Mangasini, Nature 459, 77-80; doi:https://doi.org/10.1038/nature07977

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevenson, D.S. (2018). The Evolution of Modern Continents. In: Granite Skyscrapers. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-91503-6_3

Download citation

Publish with us

Policies and ethics