Skip to main content

Our Planet’s Torrid Heart

  • Chapter
  • First Online:
Granite Skyscrapers

Part of the book series: Springer Praxis Books ((POPULAR))

  • 594 Accesses

Abstract

We have a peculiar and very misguided view of our planet as a solid lump of rock. This misconception is based on our everyday experience of standing on something that seems eternal and largely unchanging. If it were not for periodic earthquakes or occasional, somewhat inconveniencing eruptions, we might forget entirely that in truth, we live on a thin skin of cool rock floating on a torrid sea of malleable material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Edutainment is a frivolous marriage of entertainment and education – often used to entice high school and primary students into science!

References

Igneous Rocks

Planet Formation

  • Evolution of the solar nebula. VI. Mixing and transport of isotopic heterogeneity. (2004) Alan P. Boss, The Astrophysical Journal, 616, (2), 1265–1277

    Google Scholar 

  • Mixing in the Solar Nebula: Implications for Isotopic Heterogeneity and Large-Scale Transport of Refractory Grains. (2008) Alan P. Boss. Available at: https://arxiv.org/pdf/0801.1622.pdf

  • Chondrule-forming Shock Waves in the Solar Nebula by X-Ray Flares (2005) T. Nakamoto, M. R. Hayashi, N. T. Kita, & S. Tachibana, Chondrites and the Protoplanetary Disk, ASP Conference Series, Vol. 341, Proceedings of a workshop held 8–11 November 2004 in Kaua'i, Hawai'i. Edited by Alexander N. Krot, Edward R. D. Scott, and Bo Reipurth. San Francisco: Astronomical Society of the Pacific, 883–892

    Google Scholar 

  • Evidence against a chondritic Earth. (2012) Ian H. Campbell & Hugh St C. O’Neill. Nature, 483, 553–558; doi:https://doi.org/10.1038/nature10901

  • Core formation and metal–silicate fractionation of osmium and iridium from gold. (2009) James M. Brenan and William F. McDonough, Nature Geoscience 2, 798–80;1 doi:https://doi.org/10.1038/NGEO658

  • Compositions of Small Planets & Implications for Planetary Dynamics. (2017) Jennifer Johnson et al. 229th AAS Meeting, abstract # 413.06

    Google Scholar 

  • Bashing holes in the tale of Earth’s troubled youth (2018) Adam Mann, Nature 553, 393–39

    Google Scholar 

Crustal Magmatic Processes on Earth

  • Physical conditions on the early Earth. (2006) Jonathan I. Lunine, Phil. Trans. R. Soc. B (2006) 361, 1721–1731; doi:https://doi.org/10.1098/rstb.2006.1900

  • Rapid formation of eclogite in a slightly wet mantle. (1975) Thomas J. Ahrens and Gerald Schubert, Earth and Planetary Science Letters, 27, (1), 90–94; doi: http://dx.doi.org/10.1016/0012-821X(75)90165-X

    Google Scholar 

  • Formation of hybrid arc andesites beneath thick continental crust. (2011) S Susanne M. Straub, Arturo Gomez-Tuena, Finlay M. Stuart, Georg F. Zellmer, Ramon Espinasa-Perena, Yue Cai, Yoshiyuki Iizuka, Earth and Planetary Science Letters, 303, (3–4), 1, 337–347; doi: https://doi.org/10.1016/j.epsl.2011.01.013

  • Archean komatiite volcanism controlled by the evolution of early continents. (2014) David R. Mole, Marco L. Fiorentini, Nicolas Thebaud, Kevin F. Cassidy, T. Campbell McCuaig, Christopher L. Kirkland, Sandra S. Romano, Michael P. Doublier, Elena A. Belousova, Stephen J. Barnes and John Miller, PNAS, 111 (28) 10083–10088, doi: https://doi.org/10.1073/pnas.1400273111

Venusian Lavas

  • Campbell, B. A. and D. B. Campbell. Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data. (1992) Journal of Geophysical Research, 97, (E10), 16, 293–314.

    Google Scholar 

  • Longitudinal topographic profiles of very long channels in Venusian plains regions. (1992) Parker, T. J. et al. Lunar and Planetary Science Conference 23rd, Lunar and Planetary Institute, Houston, Texas, p. 1035–1036, 1992.

    Google Scholar 

Neutron Star Mergers and Nucleosynthesis

  • Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. (2017) Iair Arcavi, Griffin Hosseinzadeh, D. Andrew Howell, Curtis McCully, Dovi Poznanski, Daniel Kasen, Jennifer Barnes, Michael Zaltzman, Sergiy Vasylyev, Dan Maoz & Stefano Valenti, Nature 551, 64–66, doi:https://doi.org/10.1038/nature2429

  • Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. (2017) Daniel Kasen, Brian Metzger, Jennifer Barnes, Eliot Quataert & Enrico Ramirez-Ruiz, Nature 551, 80–84; doi:https://doi.org/10.1038/nature2445

  • The X-ray counterpart to the gravitational-wave event GW170817. (2017) E. Troja, L. Piro, H. van Eerten, R. T. Wollaeger, M. Im, O. D. Fox, N. R. Butler, S. B. Cenko, T. Sakamoto, C. L. Fryer, R. Ricci, A. Lien, R. E. Ryan Jr, O. Korobkin, S.-K. Lee, J. M. Burgess, W. H. Lee, A. M. Watson, C. Choi, S. Covino, P. D’Avanzo, C. J. Fontes, J. Becerra González, H. G. Khandrika, J. Kim, S.-L. Kim, C.-U. Lee, H. M. Lee, A. Kutyrev, G. Lim, R. Sánchez-Ramírez, S. Veilleux, M. H. Wieringa & Y. Yoon, Nature 551, 71–74; doi: https://doi.org/10.1038/nature24290

  • Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. (2017) E. Pian, P. D’Avanzo, S. Benetti, M. Branchesi, E. Brocato, S. Campana, E. Cappellaro, S. Covino, V. D’Elia, J. P. U. Fynbo, F. Getman, G. Ghirlanda, G. Ghisellini, A. Grado, G. Greco, J. Hjorth, C. Kouveliotou, A. Levan, L. Limatola, D. Malesani, P. A. Mazzali, A. Melandri, P. Møller, L. Nicastro, E. Palazzi, S. Piranomonte, A. Rossi, O. S. Salafia, J. Selsing, G. Stratta, M. Tanaka, N. R. Tanvir, L. Tomasella, D. Watson, S. Yang, L. Amati, L. A. Antonelli, S. Ascenzi, M. G. Bernardini, M. Boër, F. Bufano, A. Bulgarelli, M. Capaccioli, P. Casella, A. J. Castro-Tirado, E. Chassande-Mottin, R. Ciolfi, C. M. Copperwheat, M. Dadina, G. De Cesare, A. Di Paola, Y. Z. Fan, B. Gendre, G. Giuffrida, A. Giunta, L. K. Hunt, G. L. Israel, Z.-P. Jin, M. M. Kasliwal, S. Klose, M. Lisi, F. Longo, E. Maiorano, M. Mapelli, N. Masetti, L. Nava, B. Patricelli, D. Perley, A. Pescalli, T. Piran, A. Possenti, L. Pulone, M. Razzano, R. Salvaterra, P. Schipani, M. Spera, A. Stamerra, L. Stella, G. Tagliaferri, V. Testa, E. Troja, M. Turatto, S. D. Vergani & D. Vergani, Nature 551, 67–70; doi: https://doi.org/10.1038/nature24298

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevenson, D.S. (2018). Our Planet’s Torrid Heart. In: Granite Skyscrapers. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-91503-6_1

Download citation

Publish with us

Policies and ethics