Advertisement

Instabilities in the Wake of an Inclined Prolate Spheroid

  • Helge I. AnderssonEmail author
  • Fengjian Jiang
  • Valery L. Okulov
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 50)

Abstract

We investigate the instabilities, bifurcations and transition in the wake behind a 45-degree inclined 6:1 prolate spheroid, through a series of direct numerical simulations (DNS) over a wide range of Reynolds numbers (Re) from 10 to 3000. We provide a detailed picture of how the originally symmetric and steady laminar wake at low Re gradually looses its symmetry and turns unsteady as Re is gradually increased. Several fascinating flow features have first been revealed and subsequently analysed, e.g. an asymmetric time-averaged flow field, a surprisingly strong side force etc. As the wake partially becomes turbulent, we investigate a dominating coherent wake structure, namely a helical vortex tube, inside of which a helical symmetry alteration scenario was recovered in the intermediate wake, together with self-similarity in the far wake.

Keywords

Instability Prolate spheroid Wakes 

Notes

Acknowledgements

This work has been supported by the Research Council of Norway through a grant of computing time on the national HPC infrastructure (Programme for Supercomputing, projects nn9191 k and nn2469 k). F.J. acknowledges the funding from the Future Industry’s Leading Technology Development program (No. 10042430) of MOTIE/KEIT of Korea. V.L.O. acknowledges the Russian Science Foundation (grant no. 14-29-00093). We finally thank AIP Publishing and Cambridge University Press for permissions to reprint figure nos 15, 17, 20, and 21.

References

  1. 1.
    Ahn, S., Simpson, R.L.: Cross flow separation on a prolate spheroid at angles of attack. In: AIAA 30th Aerospace Sciences Meeting and Exhibit, Reno. AIAA No. 92-0428 (1992)Google Scholar
  2. 2.
    Alekseenko, S.V., Kuibin, P.A., Okulov, V.L., Shtork, S.I.: Helical vortices in swirl flow. J. Fluid Mech. 382, 195–243 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alekseenko, S.V., Kuibin P.A., Okulov, V.L.: Theory of Concentrated Vortices—An Introduction. Springer (2007)Google Scholar
  4. 4.
    Alin, N., Fureby, C., Svennberg, S.U., Wikström, N., Sandberg, W.C., Ramamurti, R., Bensow, R.E., Persson, T.: 3D unsteady computations for submarine like bodies. In: AIAA 43rd Aerospace Sciences Meeting, AIAA No. 05-1044 (2005)Google Scholar
  5. 5.
    Andersson, H.I., Soldati, A.: Anisotropic particles in turbulence: status and outlook. Acta Mech. 224, 2219–2223 (2013)CrossRefGoogle Scholar
  6. 6.
    Ashok, A., Smits, A.J.: The turbulent wake of a submarine model in pitch and yaw. In: Proceedings of the 8th International Symposium on Turbulence and Shear Flow Phenomena, Poitiers, France (2013)Google Scholar
  7. 7.
    Ashok, A., Van Buren, T., Smits, A.J.: Asymmetries in the wake of a submarine model in pitch. J. Fluid Mech. 774, 416–442 (2015)CrossRefGoogle Scholar
  8. 8.
    Barber, K.M., Simpson, R.L.: Mean velocity and turbulence measurements of flow around a 6:1 prolate spheroid. In: AIAA 29th Aerospace Sciences Meeting, Nevada. AIAA No. 91-0255 (1991)Google Scholar
  9. 9.
    Blottner, F.G., Ellis, M.A.: Finite-difference solution of the incompressible three-dimensional boundary layer equations for a blunt body. Comput. Fluids 1, 133–158 (1973)CrossRefGoogle Scholar
  10. 10.
    Breach, D.R.: Slow flow past ellipsoids of revolution. J. Fluid Mech. 10, 306–314 (1961)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brenner, H.: The Stokes resistance of an arbitrary particle IV: arbitrary fields of flow. Chem. Eng. Sci. 19, 703–727 (1964)CrossRefGoogle Scholar
  12. 12.
    Bridges, D.H.: The asymmetric vortex wake problem—Asking the right question. In: 36th AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper 2006-3553 (2006)Google Scholar
  13. 13.
    Cebeci, T., Khattab, A.K., Stewartson, K.: Three-dimensional laminar boundary layers and the ok of accessibility. J. Fluid Mech. 107, 57–87 (1981)CrossRefGoogle Scholar
  14. 14.
    Cebeci, T., Su, W.: Separation of three-dimensional laminar boundary layers on a spheroid at incidence. J. Fluid Mech. 191, 47–77 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chesnakas, C.J., Simpson, R.L.: Full three-dimensional measurements of the cross-flow separation region of a 6:1 prolate spheroid. Exp. Fluids 17, 68–74 (1994)CrossRefGoogle Scholar
  16. 16.
    Chesnakas, C.J., Simpson, R.L.: Detailed investigation of the three-dimensional separation about a 6:1 prolate spheroid. AIAA J. 35, 990–999 (1997)CrossRefGoogle Scholar
  17. 17.
    Constantinescu, G.S., Pasinato, H., Wang, Y.-Q., Forsythe, J.R., Squires, K.D.: Numerical investigation of flow past a prolate spheroid. Trans. ASME: J. Fluids Eng. 124, 904–910 (2002)CrossRefGoogle Scholar
  18. 18.
    Costis, C.E., Hoang, N.T., Telionis, D.P.: Laminar separating flow over a prolate spheroid. J. Aircraft 26, 810–816 (1989)CrossRefGoogle Scholar
  19. 19.
    Costis, C.E., Telionis, D.P.: Laser-Doppler velocimetry and flow visualization of 3-D flows. In: Pichel, M. (ed.) Optical Methods in Dynamics of Fluids and Solids, vol. 1, pp. 83–94. Springer (1984)CrossRefGoogle Scholar
  20. 20.
    Cummings, R.M., Forsythe, J.R., Morton, S.A., Squires, K.D.: Computational challenges in high angle of attack flow prediction. Prog. Aerosp. Sci. 39, 369–384 (2003)CrossRefGoogle Scholar
  21. 21.
    Eaton, J.K.: Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Int. J. Multiphase Flow 35, 792–800 (2009)CrossRefGoogle Scholar
  22. 22.
    El Khoury, G.K., Andersson, H.I., Pettersen, B.: Crossflow past a prolate spheroid at Reynolds number of 10 000. J. Fluid Mech. 659, 365–374 (2010)CrossRefGoogle Scholar
  23. 23.
    El Khoury, G.K., Andersson, H.I., Pettersen, B.: Wakes behind a prolate spheroid in cross flow. J. Fluid Mech. 701, 98–136 (2012)CrossRefGoogle Scholar
  24. 24.
    Faler, J.H., Leibovich, S.: Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20, 1385–1400 (1977)CrossRefGoogle Scholar
  25. 25.
    Fu, T.C., Shekarriz, A., Katz, J., Huang, T.T.: The flow structure in the lee of an inclined 6:1 prolate spheroid. J. Fluid Mech. 269, 79–106 (1994)CrossRefGoogle Scholar
  26. 26.
    Geissler, W.: Three dimensional laminar boundary layer over a body of revolution at incidence and with separation. AIAA J. 12, 1743–1745 (1974)CrossRefGoogle Scholar
  27. 27.
    George, W.K.: The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In: George, W.K., Arndt, R.E.A. (ed.) Advances in Turbulence, pp 39–73. Hemisphere (1989)Google Scholar
  28. 28.
    Goody, M.C., Simpson, R.L., Engel, M., Chesnakas, C.J., Devenport, W.J.: Mean velocity and pressure and velocity spectral measurements within a separated flow around a prolate spheroid at incidence. In: AIAA 36th Aerospace Sciences Meeting, AIAA No. 98-0630 (1998)Google Scholar
  29. 29.
    Goody, M.C., Simpson, R.L., Chesnakas, C.J.: Separated flow surface pressure fluctuations and pressure-velocity corrections on prolate spheroid. AIAA J. 38, 266–274 (2000)CrossRefGoogle Scholar
  30. 30.
    Goody, M.C., Simpson, R.L.: An experimental investigation of surface pressure fluctuations beneath 2D and 3D turbulent boundary layers. AIAA J. 38, 1822–1831 (2000)CrossRefGoogle Scholar
  31. 31.
    Gross, A., Kremheller, A., Fasel, H.F.: Simulation of flow over suboff bare hull model. In: 49th AIAA Aerospace Science Meeting, AIAA No.: 2011-290Google Scholar
  32. 32.
    Han, T., Patel, V.C.: Flow separation on a spheroid at incidence. J. Fluid Mech. 92, 643–657 (1979)CrossRefGoogle Scholar
  33. 33.
    Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics, 2nd edn. Noordhoff International Publishing, Leyden (1973)zbMATHGoogle Scholar
  34. 34.
    Hoang, N., Wetzel, T.G., Simpson, R.L.: Unsteady measurements over a 6:1 prolate spheroid undergoing time-dependent maneuvers. In: AIAA 32nd Aerospace Sciences Meeting, Reno. AIAA No. 94-0197 (1994)Google Scholar
  35. 35.
    Hoang, N., Wetzel, T.G., Simpson, R.L.: Surface pressure measurements over a 6:1 prolate spheroid undergoing time-dependent maneuvers. In: AIAA 12th Applied Aerodynamics Conference. AIAA No. 94-1908 (1994)Google Scholar
  36. 36.
    Hölzer, A., Sommerfeld, M.: New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184, 361–365 (2008)CrossRefGoogle Scholar
  37. 37.
    Hölzer, A., Sommerfeld, M.: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38, 572–589 (2009)CrossRefGoogle Scholar
  38. 38.
    Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161–179 (1922)CrossRefGoogle Scholar
  39. 39.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Jiang, F., Gallardo, J.P., Andersson, H.I.: The laminar wake behind a 6:1 prolate spheroid at 45 incidence angle. Phys. Fluids 26, 113602 (2014)CrossRefGoogle Scholar
  41. 41.
    Jiang, F., Gallardo, J.P., Andersson, H.I.: Transition and loss of symmetry in the wake behind an inclined prolate spheroid. In: Proceedings of MekIT’15: Eighth National Conference on Computational Mechanics (eds B. Skallerud and H.I. Andersson), CIMNE, pp. 219-232 (2015)Google Scholar
  42. 42.
    Jiang, F., Gallardo, J.P., Andersson, H.I., Zhang, Z.: The transitional wake behind an inclined prolate spheroid. Phys. Fluids 27, 093602 (2015)CrossRefGoogle Scholar
  43. 43.
    Jiang, F., Gallardo, J.P., Andersson, H.I., Okulov, V.L.: On the peculiar structure of a helical wake vortex behind an inclined prolate spheroid. J. Fluid Mech. 801, 1–12 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Johansson, P.B.V., George, W.K., Gourlay, M.J.: Equilibrium similarity, effects of initial conditions and local Reynolds number on the axisymmetric wake. Phys. Fluids 15, 603–617 (2003)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Johansson, P.B.V., George, W.K.: The far downstream evolution of the high-Reynolds number axisymmetric wake behind a disk. Part 1 Single-point statistics. J. Fluid Mech. 555, 363–386 (2006)CrossRefGoogle Scholar
  46. 46.
    Johnson, T.A., Patel, V.C.: Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 19–70 (1999)CrossRefGoogle Scholar
  47. 47.
    Karlsson, A., Fureby, F.C.: LES of the flow past a 6: 1 prolate spheroid. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting, AIAA No. 2009-1616 (2009)Google Scholar
  48. 48.
    Kotapati-Apparao, R.B., Squires, K.D., Forsythe, J.R.: Prediction of a prolate spheroid undergoing a pitchup maneuver. In: AIAA 41st Aerospace Sciences Meeting, AIAA No. 03-0269 (2003)Google Scholar
  49. 49.
    Kreplin, H.P., Stager, R.: Measurement of the Reynolds-stress tensor in the three-dimensional turbulent boundary layer on an inclined body of revolution. In: 9th Symposium on Turbulent Shear Flow, pp. 2–4 (1993)Google Scholar
  50. 50.
    Leibovich, S.: The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221–246 (1978)CrossRefGoogle Scholar
  51. 51.
    Leibovich, S.: Vortex stability and breakdown: survey and extension. AIAA J. 22, 1192–1206 (1984)CrossRefGoogle Scholar
  52. 52.
    Levy, Y., Degani, D., Seginer, A.: Graphical visualization of vortical flows by means of helicity. AIAA J. 28, 1347–1352 (1990)CrossRefGoogle Scholar
  53. 53.
    Leweke, T., Williamson, C.H.K.: Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85–119 (1998)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Manhart, M., Tremblay, F., Friedrich, R.: MGLET: A parallel code for efficient DNS and LES of complex geometries. In: Parallel Computational Fluid Dynamics—Trends and Applications, pp. 449–456. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  55. 55.
    Manhart, M.: A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 33, 435–461 (2004)CrossRefGoogle Scholar
  56. 56.
    Martemianov, S., Okulov, V.L.: On heat transfer enhancement in swirl pipe flows. Intl J. Heat Mass Transfer 47, 2379–2393 (2004)CrossRefGoogle Scholar
  57. 57.
    Maskell, E.C.: Flow separation in three-dimensions. Royal Aircraft Est., Report Aero. 2565 (1955)Google Scholar
  58. 58.
    Meier, H.U., Kreplin, H.P.: Experimental investigation of the boundary layer transition and separation on a body of revolution. Zeit. Flugwiss. Weltraumforsch. 4, 65–71 (1980)Google Scholar
  59. 59.
    Moffatt, H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129 (1969)CrossRefGoogle Scholar
  60. 60.
    Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J., Boersma, B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302 (2008)CrossRefGoogle Scholar
  61. 61.
    Moskowitz, C.A., Hall, R.M., Dejarnette, F.R.: Effects of nose bluntness, roughness, and surface perturbations on the asymmetric flow past slender bodies at large angles of attack. AIAA Paper 89-2236-CP (1989)Google Scholar
  62. 62.
    Oberbeck, A.: Über stationäre Flüssigkeitsbewegungen mit Berücksichtigung der inneren Reibung. J. Reine Angew. Math. 81, 62–80 (1876)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Okulov, V.L.: The transition from the right helical symmetry to the left symmetry during vortex breakdown. Tech. Phys. Lett. 22, 798–800 (1996)Google Scholar
  64. 64.
    Okulov, V.L., Sørensen, J.N., Voigt, L.K.: Vortex scenario and bubble generation in a cylindrical cavity with rotating top and bottom. Eur. J. Mech. (B/Fluids) 24, 137–148 (2005)CrossRefGoogle Scholar
  65. 65.
    Okulov, V.L., Sørensen, J.N.: Applications of 2D helical vortex dynamics. Theor. Comput. Fluid Dyn. 24, 395–401 (2010)CrossRefGoogle Scholar
  66. 66.
    Okulov, V.L., Naumov, I.V., Mikkelsen, R.F., Sørensen, J.N.: Wake effect on a uniform flow behind wind-turbine model. J. Phys: Conf. Ser. 625, 012011 (2015)Google Scholar
  67. 67.
    Ouchene, R., Khalij, M., Arcen, B., Tanière, A.: A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol. 303, 33–43 (2016)CrossRefGoogle Scholar
  68. 68.
    Pan, D., Pulliam, T.H.: The computation of steady 3D separated flows over aerodynamic bodies at incidence and yaw. In: AIAA 24th Aerospace Sciences Meeting, Nevada. AIAA No. 86-0109 (1986)Google Scholar
  69. 69.
    Patel, V.C., Baek, J.H.: Boundary layers and separation on a spheroid at incidence. AIAA J. 23, 55–63 (1985)CrossRefGoogle Scholar
  70. 70.
    Patel, V.C., Kim, S.E.: Topology of laminar flow on a spheroid at incidence. Comput. Fluids 23, 939–953 (1994)CrossRefGoogle Scholar
  71. 71.
    Peake, M., Tobak, D.J.: Topology of three dimensional separated flow. Annu. Rev. Fluid Mech. 14, 61–85 (1982)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Peller, N., Duc, A.L., Tremblay, F., Manhart, M.: High-order stable interpolations for immersed boundary methods. Int. J. Num. Meth. Fl. 52, 1175–1193 (2006)CrossRefGoogle Scholar
  73. 73.
    Peller, N.: Numerische Simulation turbulenter Strömungen mit Immersed Boundaries. Dr.-Ing. thesis, Technische Universität München (2010)Google Scholar
  74. 74.
    Pradeep, D.S., Hussain, F.: Core dynamics of a coherent structure: a prototypical physical-space cascade mechanism. In: Hunt, J.C.R., Vassilicos, J.C. (eds.) Turbulence Structure and Vortex Dynamics, pp 54–82. Cambridge University Press, Cambridge (2000)Google Scholar
  75. 75.
    Ragab, S.A.: A method for the calculation of three-dimensional boundary layers with circumferential reversed flow on bodies. In: AIAA/ASME 3rd joint Thermophysics, Fluids, Plasma, and Heat Transfer Conference, Missouri, AIAA No. 82-1023 (1982)Google Scholar
  76. 76.
    Rhee, S.H., Hino, T.: Computational investigation of 3D turbulent flow separation around a spheroid using an unstructured grid method. J. Soc. Nav. Archit. Jpn. 188, 1–9 (2000)CrossRefGoogle Scholar
  77. 77.
    Rhee, S.H., Hino, T.: Numerical simulation of unsteady turbulent flow around maneuvering prolate spheroid. AIAA J. 40, 2017–2026 (2002)CrossRefGoogle Scholar
  78. 78.
    Sanjeevi, S.K.P., Padding, J.T.: On the orientational dependence of drag experienced by spheroids. J. Fluid Mech. 820, R1 (2017)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Sarpkaya, T.: On stationary and travelling vortex breakdowns. J. Fluid Mech. 45, 545–559 (1971)CrossRefGoogle Scholar
  80. 80.
    Schiller, L., Naumann, A.Z.: Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Ver. Deutsch Ing. 77, 318–320 (1933)Google Scholar
  81. 81.
    Shirayama, S., Kuwahara, K.: Patterns of three-dimensional boundary layer separation. In: AIAA 25th Areospace Sciences Meeting, 12–15 Jan 1987, Reno, Nevada, AIAA-87-0461 (1987)Google Scholar
  82. 82.
    Simpson, R.L.: Aspects of turbulent boundary-layer separation. Prog. Aerosp. Sci. 32, 457–521 (1996)CrossRefGoogle Scholar
  83. 83.
    Simpson, R.L.: Some observations on the structure and modeling of 3-D turbulent boundary layers and separated flow. In: Humphrey, J.A.C., Gatski, T.B., Eaton, J.K., Friedrich, R., Kasagi, N., Leschziner, M.A. (eds.) Proceedings of the 4th International Symposium on Turbulence and Shear Flow Phenomena, vol. 1, pp. 1–10 (2005)Google Scholar
  84. 84.
    Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Num. Anal. 5, 530–558 (1968)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Taylor, L.K., Pankajakshan, R., Briley, W.R., Whitfield, D.L.: Scalable parallel implicit algorithm for advanced turbulence closures. In: AIAA 43rd Aerospace Sciences Meeting, AIAA No. 05–0876 (2005)Google Scholar
  86. 86.
    Taylor, Z.J., Liberzon, A., Gurka, R., Holzman, R., Reesbeck, T., Diez, F.J.: Experiments on the vortex wake of a swimming knifefish. Exp. Fluids 54, 1–4 (2013)CrossRefGoogle Scholar
  87. 87.
    Van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford (1982)Google Scholar
  88. 88.
    Vasta, V.N., Thomas, J.L., Wedan, B.W.: Navier-Stokes computations of a prolate spheroid at angle of attack. J. Aircraft 26, 986–993 (1989)CrossRefGoogle Scholar
  89. 89.
    Velte, C.M., Hansen, M.O.L., Okulov, V.L.: Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow. J. Fluid Mech. 619, 167–177 (2009)CrossRefGoogle Scholar
  90. 90.
    Velte, C.M., Okulov, V.L., Hansen, M.O.L.: Alteration of helical vortex core without change in flow topology. Phys. Fluids 23, 051707 (2011)CrossRefGoogle Scholar
  91. 91.
    Voth, G.A., Soldati, A.: Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249–276 (2017)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Wang, K.C.: Separation patterns of boundary layer over an inclined body of revolution. AIAA J. 10, 1044–1050 (1972)CrossRefGoogle Scholar
  93. 93.
    Wang, K.C.: Boundary layer over a blunt body at extremely high incidence. Phys. Fluids 17, 1381–1385 (1974)CrossRefGoogle Scholar
  94. 94.
    Wang, K.C.: Boundary layer over a blunt body at low incidence with circumferential reversed flow. J. Fluid Mech. 72, 49–65 (1975)CrossRefGoogle Scholar
  95. 95.
    Wang, K.C., Zhou, H.C., Hu, C.H., Harrington, S.: Three-dimensional separated flow structure over prolate spheroids. Proc. R. Soc. A 421, 73–90 (1990)CrossRefGoogle Scholar
  96. 96.
    Wetzel, T.G., Simpson, R.L.: The effects of vortex generating fins and jets on the crossflow separation of a submarine in a turning maneuver. In: AIAA 31st Aerospace Sciences Meeting, Reno. AIAA No. 93-0862 (1993)Google Scholar
  97. 97.
    Wetzel, T.G., Simpson, R.L., Chesnakas, C.J.: The measurement of 3D crossflow separation. AIAA J. 36, 557–564 (1998)CrossRefGoogle Scholar
  98. 98.
    Wetzel, T.G., Simpson, R.L.: Unsteady three-dimensional crossflow separation location measurements on a 6:1 prolate spheroid undergoing time-dependent maneuvers. AIAA J. 36, 2063–2071 (1998)CrossRefGoogle Scholar
  99. 99.
    Wikström, N., Svennberg, U., Alin, N., Fureby, C.: Large eddy simulation of the flow around an inclined prolate spheroid. J. Turbul. 5, 37–41 (2004)CrossRefGoogle Scholar
  100. 100.
    Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)MathSciNetCrossRefGoogle Scholar
  101. 101.
    Zastawny, M., Mallouppas, G., Zhao, F., van Wachem, B.: Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Int. J. Multiphase Flow. 39, 227–239 (2012)CrossRefGoogle Scholar
  102. 102.
    Zdravkovich, M.M.: Flow around Circular Cylinders. Fundamentals, vol. 1. Oxford University Press, Oxford (1997)Google Scholar
  103. 103.
    Zeiger, M.D., Telionis, D.P., Vlachos, P.P.: Unsteady separated flows over three-dimensional slender bodies. Prog. Aerosp. Sci. 40, 291–320 (2004)CrossRefGoogle Scholar
  104. 104.
    Zhang, H., Ahmadi, G., Fan, F.-G., McLaughlin, J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiphase Flow. 27, 971–1009 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Helge I. Andersson
    • 1
    Email author
  • Fengjian Jiang
    • 2
  • Valery L. Okulov
    • 3
    • 4
  1. 1.Department of Energy and Process EngineeringNorwegian University of Science and Technology, (NTNU)TrondheimNorway
  2. 2.Department of Marine TechnologyNTNUTrondheimNorway
  3. 3.Department of Wind EnergyTechnical University of DenmarkLyngbyDenmark
  4. 4.Institute of Thermophysics, SB of RASNovosibirskRussia

Personalised recommendations