Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 50))

Abstract

The lid-driven cavity is an important fluid mechanical system serving as a benchmark for testing numerical methods and for studying fundamental aspects of incompressible flows in confined volumes which are driven by the tangential motion of a bounding wall. A comprehensive review is provided of lid-driven cavity flows focusing on the evolution of the flow as the Reynolds number is increased. Understanding the flow physics requires to consider pure two-dimensional flows, flows which are periodic in one space direction as well as the full three-dimensional flow. The topics treated range from the characteristic singularities resulting from the discontinuous boundary conditions over flow instabilities and their numerical treatment to the transition to chaos in a fully confined cubical cavity. In addition, the streamline topology of two-dimensional time-dependent and of steady three-dimensional flows are covered, as well as turbulent flow in a square and in a fully confined lid-driven cube. Finally, an overview on various extensions of the lid-driven cavity is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here the convective scaling with characteristic velocity U is used to facilitate the mathematical analysis.

  2. 2.

    The deep penetration of the wall jet observed experimentally by Pan and Acrivos [254], which is in contradiction with the results for pure two-dimensional single-lid-driven flows (Sect. 5.1), might have been caused by the strong geometric confinement in z of the flow in their experiments with \(L_z=L_y\).

  3. 3.

    Like the elliptic instability, the quadripolar instability is due to a Kelvin-wave resonance, communicated by a quadripolar strain field [8, 102]. Since the resonance condition in the ideal case of a columnar vortex (see e.g. Chandrasekhar [61]) can only be satisfied for asymptotically large wave number k, the critical wave number in the lid-driven cavity flow is quite large: \(k_c\approx 15\) (see Fig. 20).

  4. 4.

    A dynamical system is called hyperbolic in a linear sense when the Jacobian determining the local linearization of the flow admits non-imaginary eigenvalues.

References

  1. Ahmed, M., Kuhlmann, H.C.: Flow instability in triangular lid-driven cavities with wall motion away from a rectangular corner. Fluid Dyn. Res. 44:025501–1–025501–21, 2012

    Article  MathSciNet  MATH  Google Scholar 

  2. Aidun, C.K., Triantafillopoulos, N.G., Benson, J.D.: Global stability of a lid-driven cavity with throughflow: flow visualization studies. Phys. Fluids A 3, 2081–2091 (1991)

    Article  Google Scholar 

  3. Åkervik, E., Brandt, L., Henningson, D.S., Hopffner, J., Marxen, O., Schlatter, P.: Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102 (2006)

    Article  Google Scholar 

  4. Akyuzlu, K.M.: A numerical and experimental study of laminar unsteady lid-driven cavity flows. In: Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, pp. IMECE2017–70145. ASME (2017)

    Google Scholar 

  5. Al-Amiri, A.M.: Analysis of momentum and energy transfer in a lid-driven cavity filled with a porous medium. Int. J. Heat Mass Transf. 43, 3513–3527 (2000)

    Article  MATH  Google Scholar 

  6. Albensoeder, S.: Zweidimensionale Strömungsmuster in zweiseitig angetriebenen Rechteckbehältern mittels eines Finite-Volumen-Verfahrens (in German). Mathesis, Universität Bremen (1999)

    Google Scholar 

  7. Albensoeder, S.: Lineare und nichtlineare Stabilität inkompressibler Strömungen im zweiseitig angetriebenen Rechteckbehälter (in German). Cuvillier, Göttingen (2004)

    Google Scholar 

  8. Albensoeder, S., Kuhlmann, H.C.: Linear stability of rectangular cavity flows driven by anti-parallel motion of two facing walls. J. Fluid Mech. 458, 153–180 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Albensoeder, S., Kuhlmann, H.C.: Three-dimensional instability of two counter-rotating vortices in a rectangular cavity driven by parallel wall motion. Eur. J. Mech. B/Fluids 21, 307–316 (2002)

    Article  MATH  Google Scholar 

  10. Albensoeder, S., Kuhlmann, H.C.: Stability balloon for the double-lid-driven cavity flow. Phys. Fluids 15, 2453–2456 (2003)

    Article  MATH  Google Scholar 

  11. Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity flow. J. Comput. Phys. 206, 536–558 (2005)

    Article  MATH  Google Scholar 

  12. Albensoeder, S., Kuhlmann, H.C.: Nonlinear three-dimensional flow in the lid-driven square cavity. J. Fluid Mech. 569, 465–480 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Albensoeder, S., Kuhlmann, H.C., Rath, H.J.: Three-dimensional centrifugal-flow instabilities in the lid-driven cavity problem. Phys. Fluids 13, 121–135 (2001)

    Article  MATH  Google Scholar 

  14. Albensoeder, S., Kuhlmann, H.C., Rath, H.J.: Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities. Theor. Comput. Fluid Dyn. 14, 223–241 (2001)

    Article  MATH  Google Scholar 

  15. Alizard, F., Robinet, J.C., Gloerfelt, X.: A domain decomposition matrix-free method for global linear stability. Comput. Fluids 66, 63–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Alleborn, N., Raszillier, H., Durst, F.: Lid-driven cavity with heat and mass transport. Int. J. Heat Mass Transf. 42, 833–853 (1999)

    Article  MATH  Google Scholar 

  17. Anderson, P.D., Galaktionov, O.S., Peters, G.W.M., van de Vosse, F.N., Meijer, H.E.H.: Analysis of mixing in three-dimensional time-periodic cavity flows. J. Fluid Mech. 386, 149–166 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Anderson, P.D., Galaktionov, O.S., Peters, G.W., van de Vosse, F.N., Meijer, H.E.: Chaotic fluid mixing in non-quasi-static time-periodic cavity flows. Int. J. Heat Fluid Flow 21, 176–185 (2000)

    Article  Google Scholar 

  19. Anderson, P.D., Ternet, D., Peters, W.M., Mejer, H.E.H.: Experimental/numerical analysis of chaotic advection in a three-dimensional cavity. Int. Polym. Process. 21, 412–420 (2006)

    Article  Google Scholar 

  20. Aref, H.: Chaotic advection of fluid particles. Philos. Trans. R. Soc. Lond. Ser. A: Phys. Eng. Sci. 333(1631), 273–288 (1990)

    Article  MATH  Google Scholar 

  21. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer (2007)

    Google Scholar 

  22. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  23. Auteri, F., Parolini, N., Quartapelle, L.: Numerical investigation on the stability of singular driven cavity flow. J. Comput. Phys. 183, 1–25 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Auteri, F., Quartapelle, L., Vigevano, L.: Accurate \(\omega \)-\(\psi \) spectral solution of the singular driven cavity problem. J. Comput. Phys. 180, 597–615 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bagheri, S., Åkervik, E., Brandt, L., Hennignson, D.S.: Matrix-free methods for the stability and control of boundary layers. AIAA J. 47, 1057–1068 (2009)

    Article  Google Scholar 

  26. Bajer, K.: Hamiltonian formulation of the equations of streamlines in three-dimensional steady flow. Chaos Solitons Fractals 4, 895–911 (1994)

    Article  MATH  Google Scholar 

  27. Barkley, D., Henderson, R.D.: Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215–241 (1996)

    Article  MATH  Google Scholar 

  28. Barletta, A., Nield, D.A.: Mixed convection with viscous dissipation and pressure work in a lid-driven square enclosure. Int. J. Heat Mass Transf. 52, 42444253 (2009)

    MATH  Google Scholar 

  29. Batchelor, G.K.: On steady laminar flow with closed streamlines at large Reynolds numbers. J. Fluid Mech. 1, 177–190 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  30. Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid part 1. general discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bayly, B.J.: Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 2160–2163 (1986)

    Article  MathSciNet  Google Scholar 

  32. Belhachmi, Z., Bernardi, C., Karageorghis, A.: Spectral element discretization of the circular driven cavity. part iv. the Navier–Stokes equations. J. Math. Fluid Mech. 6, 121–156 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Benson, J.D., Aidun, C.K.: Transition to unsteady nonperiodic state in a through-flow lid-driven cavity. Phys. Fluids A 4, 2316–2319 (1992)

    Article  Google Scholar 

  34. Bergamo, L.F., Gennaro, E.M., Theofilis, V., Medeiros, M.A.F.: Compressible modes in a square lid-driven cavity. Aerosp. Sci. Technol. 44, 125–134 (2015)

    Article  Google Scholar 

  35. Beya, B.B., Lili, T.: Three-dimensional incompressible flow in a two-sided non-facing lid-driven cubical cavity. Comptes Rendus Mecanique 336, 863–872 (2008)

    Article  MATH  Google Scholar 

  36. Bhattacharya, M., Basak, T., Oztop, H.F., Varol, Y.: Mixed convection and role of multiple solutions in lid-driven trapezoidal enclosures. Int. J. Heat Mass Transf. 63, 366–388 (2013)

    Article  Google Scholar 

  37. Billah, M.M., Rahman, M.M., Sharif, U.M., Rahim, N.A., Saidur, R., Hasanuzzaman, M.: Numerical analysis of fluid flow due to mixed convection in a lid-driven cavity having a heated circular hollow cylinder. Int. Commun. Heat Mass Transf. 38, 1093–1103 (2011)

    Article  Google Scholar 

  38. Blackburn, H.M., Lopez, J.M.: The onset of three-dimensional standing and modulated travelling waves in a periodically driven cavity flow. J. Fluid Mech. 497, 289–317 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Blackburn, H.M., Lopez, J.M.: Modulated waves in a periodically driven annular cavity. J. Fluid Mech. 667, 336–357 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Blohm, C.: Experimentelle Untersuchung stationärer und zeitabhängiger Strömungen im zweiseitig angetriebenen Rechteckbehälter (in German). Ph.D thesis, University of Bremen (2001)

    Google Scholar 

  41. Blohm, C., Kuhlmann, H.C.: The two-sided lid-driven cavity: experiments on stationary and time-dependent flows. J. Fluid Mech. 450, 67–95 (2002)

    Article  MATH  Google Scholar 

  42. Blohm, C., Albensoeder, S., Kuhlmann, H.C., Broda, M., Rath, H.J.: The two-sided lid-driven cavity: Aspect-ratio dependence of the flow stability. Z. Angew. Math. Mech. 81(Suppl. 3), 781–782 (2001)

    Article  MATH  Google Scholar 

  43. Bödewadt, U.T.: Die Drehströmung Ă¼ber festem Grunde. Z. Angew. Math. Mech. 20, 241–253 (1940)

    Article  MATH  Google Scholar 

  44. Boppana, V.B.L., Gajjar, J.S.B.: Global flow instability in a lid-driven cavity. Int. J. Numer. Methods Fluids 62, 827–853 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Botella, O.: On the solution of the Navier–Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Comput. Fluids 26, 107–116 (1997)

    Article  MATH  Google Scholar 

  46. Botella, O., Peyret, R.: The Chebyshev approximation for the solution of singular Navier–Stokes problems. In: Numerical Modelling in Continuum Mechanics: Proceedings of the 3rd Summer Conference, pp. 8–11. Prague (1997)

    Google Scholar 

  47. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27, 421–433 (1998)

    Article  MATH  Google Scholar 

  48. Botella, O., Peyret, R.: Computing singular solutions of the Navier–Stokes equations with the Chebyshev-collocation method. Int. J. Numer. Methods Fluids 36, 125–163 (2001)

    Article  MATH  Google Scholar 

  49. Botella, O., Forestier, M.Y., Pasquetti, R., Peyret, R., Sabbah, C.: Chebyshev methods for the Navier-Stokes equations: algorithms and applications. Nonlinear Anal. 47, 4157–4168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bouffanais, R., Deville, M.O., Fischer, P.F., Leriche, E., Weill, D.: Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method. J. Sci. Comput. 27, 151–162 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bouffanais, R., Deville, M.O., Leriche, E.: Large-eddy simulation of the flow in a lid-driven cubical cavity. Phys. Fluids 19, 055108–1–055108–20, (2007)

    Article  MATH  Google Scholar 

  52. Boyling, J.B.: A rigidity result for biharmonic functions clamped at a corner. Z. Angew. Math. Phys. 46, 289–294 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. Brandt, A., Livne, O.E.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised edn. SIAM (2011)

    Google Scholar 

  54. Brés, G.A., Colonius, T.: Three-dimensional instabilities in compressible flow over open cavities. J. Fluid Mech. 599, 309–339 (2008)

    Article  MATH  Google Scholar 

  55. Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Motions in Families of Dynamical Systems: Order Amidst Chaos. Springer, Berlin (2009)

    Google Scholar 

  56. Bruneau, C.-H.: Direct Numerical Simulation and Analysis of 2D Turbulent Flows, pp. 33–44. Birkhäuser Basel, Basel, (2007)

    Google Scholar 

  57. Bruneau, C.-H., Saad, M.: The 2d lid-driven cavity problem revisited. Comput. Fluids 35, 326–348 (2006)

    Article  MATH  Google Scholar 

  58. Burggraf, O.R.: Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24, 113–151 (1966)

    Article  Google Scholar 

  59. Cadou, J.M., Guevel, Y., Girault, G.: Numerical tools for the stability analysis of 2D flows: application to the two- and four-sided lid-driven cavity. Fluid Dyn. Res. 44, 031403–1–021403–12 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Cazemier, W., Verstappen, R.W.C.P., Veldman, A.E.P.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10, 1685–1699 (1998)

    Article  Google Scholar 

  61. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1961)

    MATH  Google Scholar 

  62. Chang, M.-H., Cheng, C.-H.: Predictions of lid-driven flow and heat convection in an arc-shape cavity. Int. Commun. Heat. Mass Transfer 26, 829–838 (1999)

    Article  Google Scholar 

  63. Chatterjee, D.: MHD mixed convection in a lid-driven cavity including a heated source. Numer. Heat Transf. A 64, 235–254 (2013)

    Article  Google Scholar 

  64. Chen, C.-L., Cheng, C.-H.: Numerical prediction of buoyancy-induced periodic flow pattern and heat transfer in a lid-driven arc-shape cavity. Numer. Heat Transf. A 44, 645–663 (2003)

    Article  Google Scholar 

  65. Chen, C.-L., Cheng, C.-H.: Experimental and numerical study of mixed convection and flow pattern in a lid-driven arc-shape cavity. Heat Mass Transf. 41, 58–66 (2004)

    Article  Google Scholar 

  66. Chen, C.-L., Cheng, C.-H.: Numerical simulation of periodic mixed convective heat transfer in a rectangular cavity with a vibrating lid. Appl. Therm. Eng. 29, 2855–2862 (2009)

    Article  Google Scholar 

  67. Chen, C.-L., Cheng, C.-H.: Numerical study of the effects of lid oscillation on the periodic flow pattern and convection heat transfer in a triangular cavity. Int. Commun. Heat Mass Transf. 36, 590–596 (2009)

    Article  Google Scholar 

  68. Chen, C.-L., Chung, Y.-C., Lee, T.-F.: Experimental and numerical studies on periodic convection flow and heat transfer in a lid-driven arc-shape cavity. Int. Commun. Heat Mass Transf. 39, 1563–1571 (2012)

    Article  Google Scholar 

  69. Chen, K.-T., Tsai, C.-C., Luo, W.-J., Chen, C.-N.: Multiplicity of steady solutions in a two-sided lid-driven cavity with different aspect ratios. Theor. Comput. Fluid Dyn. 27, 767–776 (2013)

    Article  Google Scholar 

  70. Chen, K.-T., Tsai, C.-C., Luo, W.-J., Lu, C.W., Chen, C.H.: Aspect ratio effect on multiple flow solutions in a two-sided parallel motion lid-driven cavity. J. Mech. 31, 153–160 (2015). ISSN 1811-8216

    Article  Google Scholar 

  71. Cheng, C.-H., Chen, C.-L.: Buoyancy-induced periodic flow and heat transfer in lid-driven cavities with different cross-sectional shapes. Int. Commun. Heat Mass Transf. 32, 483–490 (2005)

    Article  Google Scholar 

  72. Cheng, C.-Q., Sun, Y.-S.: Existence of invariant tori in three-dimensional measure-preserving mappings. Celest. Mech. Dyn. Astron. 47, 275–292 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  73. Cheng, C.-Q., Sun, Y.-S.: Existence of periodically invariant curves in 3-dimensional measure-preserving mappings. Celest. Mech. Dyn. Astron. 47(3), 293–303 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  74. Cheng, M., Hung, K.C.: Vortex structure of steady flow in a rectangular cavity. Comput. Fluids 35, 1046–1062 (2006)

    Article  MATH  Google Scholar 

  75. Chiang, T.P., Sheu, W.H.: Numerical prediction of eddy structure in a shear-driven cavity. Comput. Mech. 20, 379–396 (1997)

    Article  MATH  Google Scholar 

  76. Chiang, T.P., Hwang, R.R., Sheu, W.H.: Finite volume analysis of spiral motion in a rectangular lid-driven cavity. Int. J. Numer. Methods Fluids 23, 325–346 (1996)

    Article  MATH  Google Scholar 

  77. Chiang, T.P., Hwang, R.R., Sheu, W.H.: On end-wall corner vortices in a lid-driven cavity. J. Fluids Eng. 119, 201–214 (1997)

    Article  Google Scholar 

  78. Chiang, T.P., Sheu, W.H., Hwang, R.R.: Three-dimensional vortex dynamics in a shear-driven rectangular cavity. Int. J. Comput. Fluid Dyn. 8, 201–214 (1997)

    Article  MATH  Google Scholar 

  79. Chiang, T.P., Sheu, W.H., Hwang, R.R.: Effect of Reynolds number on the eddy structure in a lid-driven cavity. Int. J. Numer. Methods Fluids 26, 557–579 (1998)

    Article  MATH  Google Scholar 

  80. Chicheportiche, J., Merle, X., Gloerfelt, X., Robinet, J.-C.: Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity. Comptes Rendus Mecanique 336, 586–591 (2008)

    Article  Google Scholar 

  81. Chien, W.-L., Rising, H., Ottino, J.M.: Laminar mixing and chaotic mixing in several cavity flows. J. Fluid Mech. 170, 355–377 (1986)

    Article  Google Scholar 

  82. Cohen, N., Eidelman, A., Elperin, T., Kleeorin, N., Rogachevskii, I.: Sheared stably stratified turbulence and large-scale waves in a lid driven cavity. Phys. Fluids 26, 105106–1–105106–16 (2014)

    Article  Google Scholar 

  83. Courbebaisse, G., Bouffanais, R., Navarro, L., Leriche, E., Deville, M.: Time-scale joint representation of DNS and LES numerical data. Comput. Fluids 43, 38–45 (2011)

    Article  MATH  Google Scholar 

  84. Crouzeix, M., Philippe, B., Sadkane, M.: The Davidson method. SIAM J. Sci. Comput. 15, 62–76 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  85. Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 87–94 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  86. Davidson, E.R.: Matrix eigenvector methods. In: Methods in Computational Molecular Physics, pp. 95–113. Springer, Berlin (1983)

    Chapter  Google Scholar 

  87. Davis, A.M.J., O’Neill, M.E.: Separation in a slow linear shear flow past a cylinder and a plane. J. Fluid Mech. 81, 551–564 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  88. Davis, A.M.J., Smith, S.G.L.: Three-dimensional corner eddies in Stokes flow. Fluid Dyn. Res 46, 015509–1–015509–8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  89. Davis, A.M.J., O’Neill, M.E., Dorrepaal, J.M., Ranger, K.B.: Separation from the surface of two equal spheres in Stokes flow. J. Fluid Mech. 77, 625–644 (1976)

    Article  MATH  Google Scholar 

  90. de Vicente, J., Rodríguez, D., Theofilis, V., Valero, E.: Stability analysis in spanwise-periodic double-sided lid-driven cavity flows with complex cross-sectional profiles. Comput. Fluids 43, 143–153 (2011)

    Article  MATH  Google Scholar 

  91. de Vicente, J., Basley, J., Meseguer-Garrido, F., Soria, J., Theofilis, V.: Three-dimensional instabilities over a rectangular open cavity: from linear stability analysis to experimentation. J. Fluid Mech. 748, 189–220 (2014)

    Article  Google Scholar 

  92. de Vicente, J., Basley, J., Meseguer-Garrido, F., Soria, J., Theofilis, V.: Three-dimensional instabilities over a rectangular open cavity: from linear stability analysis to experimentation – ERRATUM. J. Fluid Mech. 751, 747–748 (2014)

    Article  Google Scholar 

  93. Dean, W.R., Montagnon, P.E.: On the steady motion of viscous liquid in a corner. Proc. Camb. Philos. Soc. 45, 389–394 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  94. Deshpande, M.D., Milton, S.G.: Kolmogorov scales in a driven cavity flow. Fluid Dyn. Res. 22, 359–381 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  95. Deville, M., LĂª, T.-H., Morchoisne, Y.: Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows. Notes on Numerical Fluid Mechanics, vol. 36. Vieweg, Braunschweig (1992)

    Google Scholar 

  96. Ding, Y., Kawahara, M.: Linear stability of incompressible fluid flow in a cavity using finite element method. Int. J. Numer. Methods Fluids 27, 139–157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  97. Ding, Y., Kawahara, M.: Three-dimensional linear stability analysis of incompressible viscous flows using the finite element method. Int. J. Numer. Methods Fluids 31, 451–479 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  98. dos Santos, D.D., Frey, S., Naccache, M.F., de Souza Mendes, P.R.: Numerical approximations for flow of viscoplastic fluids in a lid-driven cavity. J. Non-Newton. Fluid Mech. 166, 667–679 (2011)

    Google Scholar 

  99. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  100. Eckmann, J.-P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53, 643–654 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  101. Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.: Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 110, 82–102 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  102. Eloy, C., Le Dizès, S.: Stability of the Rankine vortex in a multipolar strain field. Phys. Fluids 13, 660–676 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  103. Erturk, E., Gokcol, O.: Fine grid numerical solutions of triangular cavity flow. Eur. Phys. J. Appl. Phys. 38, 97–105 (2007)

    Article  Google Scholar 

  104. Erturk, E., Corke, T.C., Gökçöl, C.: Numerical solutions of 2-d steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48, 747–774 (2005)

    Article  MATH  Google Scholar 

  105. Eskandari, M., Nourazar, S.S.: On the time relaxed Monte Carlo computations for the lid-driven micro cavity flow. J. Comput. Phys. 343, 355–367 (2017)

    Article  MathSciNet  Google Scholar 

  106. Faure, T., Pastur, L., Lusseyran, F., Fraigneau, Y., Bisch, D.: Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape. Exp. Fluids 47, 395–410 (2009)

    Article  Google Scholar 

  107. Faure, T.M., Adrianos, P., Lusseyran, F., Pastur, L.: Visualizations of the flow inside an open cavity at medium range Reynolds numbers. Exp. Fluids 42, 169–184 (2007)

    Article  Google Scholar 

  108. Feldman, Y.: Theoretical analysis of three-dimensional bifurcated flow inside a diagonally lid-driven cavity. Theor. Comput. Fluid Dyn. 29, 245–261 (2015)

    Article  Google Scholar 

  109. Feldman, Y., Gelfgat, A.Y.: Oscillatory instability of a three-dimensional lid-driven flow in a cube. Phys. Fluids 22, 093602-1–093602-9 (2010)

    Article  Google Scholar 

  110. Feldman, Y., Gelfgat, A.Y.: From multi- to single-grid CFD on massively parallel computers: numerical experiments on lid-driven flow in a cube using pressure velocity coupled formulation. Comput. Fluids 46, 218–223, (2011)

    Article  MathSciNet  MATH  Google Scholar 

  111. Fix, G.J., Gulati, S., Wakoff, G.I.: On the use of singular functions with finite element approximations. J. Comput. Phys. 13, 209–228 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  112. Floryan, J.M., Czechowski, L.: On the numerical treatment of corner singularity in the vorticity field. J. Comput. Phys. 118, 222–228 (1995)

    Article  MATH  Google Scholar 

  113. Fortin, A., Jardak, M., Gervais, J., Pierre, R.: Localization of Hopf bifurcation in fluid flow problems. Int. J. Numer. Methods Fluids 24, 1185–1210 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  114. Franjione, J.G., Leong, C.-W., Ottino, J.M.: Symmetries within chaos: a route to effective mixing. Phys. Fluids A 1, 1772–1783 (1989)

    Article  MathSciNet  Google Scholar 

  115. Freitas, C.J., Street, R.L., Findikakis, A.N., Koseff, J.R.: Numerical simulation of three-dimensional flow in a cavity. Int. J. Numer. Methods Fluids 5, 561–575 (1985)

    Article  MATH  Google Scholar 

  116. Fuchs, L., Tillmark, N.: Numerical and experimental study of driven flow in a polar cavity. Int. J. Numer. Methods Fluids 5, 311–329 (1985)

    Article  Google Scholar 

  117. Garcia, S.: The lid-driven square cavity flow: From stationary to time periodic and chaotic. Commun. Comput. Phys. 2, 900–932 (2007)

    MathSciNet  MATH  Google Scholar 

  118. Gaskell, P.H., GĂ¼rcan, F., Savage, M.D., Thompson, H.M.: Stokes flow in a double-lid-driven cavity with free surface side walls. Proc. Inst. Mech. Eng. 212, 387–403 (1998)

    Google Scholar 

  119. Gelfgat, A.Y.: Implementation of arbitrary inner product in the global Galerkin method for incompressible Navier–Stokes equations. J. Comput. Phys. 211, 513–530 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  120. Georgiou, G.C., Olson, L.G., Schultz, W.W., Sagan, S.: A singular finite element for Stokes flow: the stick-slip problem. Int. J. Numer. Methods Fluids 9, 1353–1367 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  121. Ghia, U., Goyal, R.K.: Laminar incompressible recirculating flow in a driven cavity of polar cross section. ASME J. Fluids Eng. 99, 774–777 (1977)

    Article  Google Scholar 

  122. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  123. Glowinski, R., Guidoboni, G., Pan, T.-W.: Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity. J. Comput. Phys. 216, 76–91 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  124. Gogoi, B.B.: Global 2D stability analysis of the cross lid-driven cavity flow with a streamfunction-vorticity approach. Int. J. Comput. Methods Eng. Sci. Mech. 17, 253–273 (2016)

    Article  MathSciNet  Google Scholar 

  125. Golub, H.G., van Loan, H.G.: Matrix Computations. Johns Hopkins University Press (1989)

    Google Scholar 

  126. GĂ³mez, F., Paredes, P., GĂ³mez, R., Theofilis, V.: Global stability of cubic and large aspect ratio three-dimensional lid-driven cavities. In: 42nd AIAA Fluid Dynamics Conference and Exhibit, pp. AIAA 2012–3274, New Orleans, Louisiana. AIAA (2012)

    Google Scholar 

  127. GĂ³mez, F., GĂ³mez, R., Theofilis, V.: On three-dimensional global linear instability analysis of flows with standard aerodynamics codes. Aerosp. Sci. Technol. 32, 223–234 (2014)

    Article  Google Scholar 

  128. Gomilko, A.M., Malyuga, V.S., Meleshko, V.V.: On steady Stokes flow in a trihedral rectangular corner. J. Fluid Mech. 476, 159–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  129. GonzĂ¡lez, L.M., Ahmed, M., KĂ¼hnen, J., Kuhlmann, H.C., Theofilis, V.: Three-dimensional flow instability in a lid-driven isosceles triangular cavity. J. Fluid Mech. 675, 369–696 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  130. GonzĂ¡lez, L.M., Ferrer, E., DĂ­az-Ojeda, H.R.: Onset of three-dimensional flow instabilities in lid-driven circular cavities. Phys. Fluids 29, 064102–1–064102–16 (2017)

    Article  Google Scholar 

  131. Goodier, J.N.: An analogy between the slow motions of a viscous fluid in two dimensions, and systems of plane stress. Lond. Edinb. Dublin Phil. Mag. J. Sci. 17(113), 554–576 (1934)

    Article  MATH  Google Scholar 

  132. Goodrich, J.W., Gustafson, K., Halasi, K.: Hopf bifurcation in the driven cavity. J. Comput. Phys. 90, 219–261 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  133. Görtler, H.: Ăœber eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden. Nachrichten von der Akademie der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1, 1–26 (1941)

    Google Scholar 

  134. Görtler, H.: On the three-dimensional instability of laminar boundary layers on concave walls. Technical Report 1375, National Advisory Committee for Aeronautics (1954)

    Google Scholar 

  135. Görtler, H.: Dreidimensionale Instabilität der ebenen Staupunktströmung gegenĂ¼ber wirbelartigen Strörungen, FĂ¼nfzig Jahre Grenzschichtforschung, pp. 304–314. Vieweg, Braunschweig (1955)

    Google Scholar 

  136. Grillet, A.M., Yang, B., Khomami, B., Shaqfeh, E.S.G.: Modeling of viscoelastic lid driven cavity flow using finite element simulations. J. Non-Newton. Fluid Mech. 88, 99–131 (1999)

    Article  MATH  Google Scholar 

  137. Grillet, A.M., Shaqfeh, E.S.G., Khomami, B.: Observations of elastic instabilities in lid-driven cavity flow. J. Non-Newton. Fluid Mech. 94, 15–35 (2000)

    Article  Google Scholar 

  138. Guermond, J.-L., Migeon, C., Pineau, G., Quartapelle, L.: Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re \(=\) 1000. J. Fluid Mech. 450, 169–199 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  139. Gupta, M.M., Manohar, R.P., Noble, B.: Nature of viscous flows near sharp corners. Comput. Fluids 9, 379–388 (1981)

    Article  MATH  Google Scholar 

  140. GĂ¼rcan, F.: Effect of the Reynolds number on streamline bifurcations in a double-lid-driven cavity with free surfaces. Comput. Fluids 32, 1283–1298 (2003)

    Article  MATH  Google Scholar 

  141. GĂ¼rcan, F.: Streamline topologies in Stokes flow within lid-driven cavities. Theor. Comput. Fluid. Dyn. 17, 19–30 (2003)

    Article  MATH  Google Scholar 

  142. GĂ¼rcan, F., Bilgil, H.: Bifurcations and eddy genesis of Stokes flow within a sectorial cavity. Eur. J. Mech. B/Fluids 39, 42–51 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  143. Gustafson, K., Halasi, K.: Cavity flow dynamics at higher Reynolds number and higher aspect ratio. J. Comput. Phys. 70, 271–283 (1987)

    Article  MATH  Google Scholar 

  144. Habisreutinger, M.A., Bouffanais, R., Leriche, E., Deville, M.O.: A coupled approximate deconvolution and dynamic mixed scale model for large-eddy simulation. J. Comput. Phys. 224, 241–266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  145. Hackbusch, W.: On the multi-grid method applied to difference equations. Computing 20, 291–306 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  146. Hafizi, M.Y.M., Idris, M.S., Ammar, N.M.M.: Study on the behavior of particles in high Reynolds number in semi ellipse lid driven cavity. In: Proceedings of the International Multi-Conference of Engineers and Computer Scientists, vol. 2, 2015

    Google Scholar 

  147. Hancock, C., Lewis, E., Moffatt, H.K.: Effects of inertia in forced corner flows. J. Fluid Mech. 112, 315–327 (1981)

    Article  MATH  Google Scholar 

  148. Hansen, E.B., Kelmanson, M.A.: An integral equation justification of the boundary conditions of the driven-cavity problem. Comput. Fluids 23, 225–240 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  149. Harlow, F.H., Welsh, J.E.: Numerical calculation of the time dependent viscous incompressible flow with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  150. Hills, C.P., Moffatt, H.K.: Rotary honing: a variant of the Taylor paint-scraper problem. J. Fluid Mech. 418, 119–135 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  151. Hopf, E.: Bericht der Math.-Phys. Klasse der Sächsischen Akademie der Wissenschaften zu Leipzig, Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. 94, 1–22 (1942)

    Google Scholar 

  152. Hossain, M.S., Bergstrom, D.J., Chen, X.B.: Visualisation and analysis of large-scale vortex structures in three-dimensional turbulent lid-driven cavity flow. J. Turbul. 16, 901–924 (2015)

    Article  MathSciNet  Google Scholar 

  153. Huerre, P., Rossi, M.: Hydrodynamic instabilities in open flows. In: Godréche, C., Manneville, P. (eds.), Hydrodynamics and Nonlinear Instabilities, Chapter 2, pp. 81–294. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  154. Humphrey, J., Cushner, J., Sudarsan, R., Al-Shannag, M., Herrero, J., Giralt, F.: Experimental and numerical investigation of the shear-driven flow in a toroid of square cross-section. In: Lindborg, E., Johansson, A., Eaton, J., Humphrey, J., Kasagi, N., Leschziner, M., Sommerfeld, M. (eds) 2nd International Symposium on Turbulence and Shear Flow Phenomena, vol. III, p. 351, Stockholm, Sweden. Royal Institute of Technology (2001)

    Google Scholar 

  155. Humphrey, J.A.C., Cushner, J., Al-Shannag, M., Herrero, J., Giralt, F.: Shear-driven flow in a toroid of square cross section. ASME J. Fluids Eng. 125, 130–137 (2003)

    Article  Google Scholar 

  156. Idris, M.S., Azwadi, C.S.N., Ammar, N.M.M.; Cubic interpolation profile Navier–Stokes numerical scheme for particle flow behaviour in triangular lid driven cavity. In: 4th International Meeting of Advances in Thermofluids (2012)

    Google Scholar 

  157. Inouye, K.: Ecoulement d’un fluide visqueux dans un angle droit. J. de Mécanique 12, 609–628 (1973)

    MATH  Google Scholar 

  158. Iooss, G., Joseph, D.D.: Elementary Stability and Bifurcation Theory. Springer (2012)

    Google Scholar 

  159. Isaev, S.A., Baranov, P.A., Sudakov, A.G., Mordynsky, N.A.: Numerical analysis of vortex dynamics and unsteady turbulent heat transfer in lid-driven square cavity. Thermophys. Aeromech. 15, 463–475 (2008)

    Article  Google Scholar 

  160. Ishii, K., Adachi, S.: Numerical analysis of 3d vortical cavity flow. Proc. Appl. Math. Mech. 6, 871–874 (2006)

    Article  Google Scholar 

  161. Ishii, K., Adachi, S.: Transition of streamline patterns in three-dimensional cavity flows. Theor. Appl. Mech. Japan 59, 203–210 (2010)

    Google Scholar 

  162. Ishii, K., Adachi, S.: Dependence on the aspect ratio of streamline patterns in three-dimensional cavity flows. Theor. Appl. Mech. Japan 60, 51–61 (2011)

    Google Scholar 

  163. Ishii, K., Iwatsu, R.: Numerical simulation of the Lagrangian flow structure in a driven cavity. In: Moffatt, H.K., Tsinober, A. (eds.) Topological Fluid Mechanics, pp. 54–63. Cambridge University Press, Cambridge, U.K. (1990)

    Google Scholar 

  164. Ishii, K., Ota, C., Adachi, S.: Streamlines near a closed curve and chaotic streamlines in steady cavity flows. Proc. IUTAM 5, 173–186 (2012)

    Article  Google Scholar 

  165. Ismael, M.A.: Numerical solution of mixed convection in a lid-driven cavity with arc-shaped moving wall. Eng. Comput. 43, 869–891 (2016)

    Google Scholar 

  166. Iwatsu, R., Hyun, J.M.: Three-dimensional driven-cavity flows with a vertical temperature gradient. Intl J. Heat Mass Transf. 38, 3319–3328 (1995)

    Article  MATH  Google Scholar 

  167. Iwatsu, R., Ishii, K., Kawamura, T., Kuwahara, K., Hyun, J.M.: Numerical simulation of three-dimensional flow structure in a driven cavity. Fluid Dyn. Res. 5, 173–189 (1989)

    Article  Google Scholar 

  168. Iwatsu, R., Hyun, J.M., Kuwahara, K.: Mixed convection in a driven cavity with a stable vertical temperature gradient. Intl J. Heat Mass Transf. 36, 1601–1608 (1993)

    Article  Google Scholar 

  169. Jana, S.C., Metcalfe, G., Ottino, J.M.: Experimental and numerical studies of mixing in complex Stokes flow: the vortex mixing flow and multicellular cavity flow. J. Fluid Mech. 269, 199–246 (1994)

    Article  MathSciNet  Google Scholar 

  170. Jana, S.C., Tjahjadi, M., Ottino, J.M.: Chaotic mixing of viscous fluids by periodic changes in geometry: baffled cavity flow. AIChE J. 40, 1769–1781 (1994)

    Article  Google Scholar 

  171. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  172. Jordan, S.A., Ragab, S.A.: On the unsteady and turbulent characteristics of the three-dimensional shear-driven cavity flow. J. Fluids Eng. 116, 439–449 (1994)

    Article  Google Scholar 

  173. Jordi, B.E., Cotter, C.J., Sherwin, S.J.: An adaptive selective frequency damping method. Phys. Fluids 27, 094104–1–094104–8 (2015)

    Article  Google Scholar 

  174. Joseph, D.D.: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems part I. SIAM J. Appl. Math. 33, 337–347 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  175. Joseph, D.D., Sturges, L.: The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: part II. SIAM J. Appl. Math. 34, 7–26 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  176. Kandemir, I., Kaya, A.M.: Molecular dynamics simulation of compressible hot/cold moving lid-driven microcavity flow. Microfluid Nanofluid 12, 509–520 (2012)

    Article  Google Scholar 

  177. Kawaguti, M.: Numerical solution of the Navier-Stokes equations for the flow in a two-dimensional cavity. J. Phys. Soc. Jap. 16, 2307–2315 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  178. Keiller, R.A., Hinch, E.J.: Corner flow of a suspension of rigid rods. J. Non-Newton. Fluid Mech. 40, 323–335 (1991)

    Article  MATH  Google Scholar 

  179. Keller, H.B.: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, pp. 359–384. Academic Press, New York (1977)

    Google Scholar 

  180. Kelmanson, M.A.: An integral equation method for the solution of singular slow flow problems. J. Comput. Phys. 51, 139–158 (1983)

    Article  MATH  Google Scholar 

  181. Kelmanson, M.A.: Modified integral equation solution of viscous flows near sharp corners. Comput. Fluids 11, 307–324 (1983)

    Article  MATH  Google Scholar 

  182. Kelmanson, M.A.: Solution of nonlinear elliptic equations with boundary singularities by an integral equation method. J. Comput. Phys. 56, 244–258 (1984)

    Article  MATH  Google Scholar 

  183. Kelmanson, M.A., Lonsdale, B.: Eddy genesis in the double-lid-driven cavity. Q. J. Mech. Appl. Math. 49, 635–655 (1996)

    Article  MATH  Google Scholar 

  184. Kelmanson, M.A., Lonsdale, B.: Annihilation of boundary singularities via suitable Green’s functions. Comput. Math. Appl. 29, 1–7 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  185. Kelvin, Lord: Vibrations of a columnar vortex. Phil. Mag. 10, 155–168 (1880)

    Article  MATH  Google Scholar 

  186. Kerstin, J., Wood, R.T.: On the stability of two-dimensional stagnation flow. J. Fluid Mech. 44, 461–479 (1970)

    Article  MATH  Google Scholar 

  187. Khanafer, K.: Comparison of flow and heat transfer characteristics in a lid-driven cavity between flexible and modified geometry of a heated bottom wall. Int. J. Heat Mass Transf. 78, 1032–1041 (2014)

    Article  Google Scholar 

  188. Khanafer, K.M., Al-Amiri, A.M., Pop, I.: Numerical simulation of unsteady mixed convection in a driven cavity using an externally excited sliding lid. Eur. J. Mech. B/Fluids 26, 669–687 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  189. Khorasanizade, S., Sousa, J.M.M.: A detailed study of lid-driven cavity flow at moderate Reynolds numbers using incompressible SPH. Int. J. Numer. Methods Fluids 76, 653–668 (2014)

    Article  MathSciNet  Google Scholar 

  190. Kneib, F., Faug, T., Nicolet, G., Eckert, N., Naaim, M., Dufour, F.: Force fluctuations on a wall in interaction with a granular lid-driven cavity flow. Phys. Rev. E 96, 042906–1–042906–15 (2017)

    Google Scholar 

  191. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  192. Kondratiev, V.A.: Asymptotics of solutions of the Navier-Stokes equation in a neighbourhood of a corner point. Prikl. Math. Mekh. 31, 119–123 (1967)

    Google Scholar 

  193. Koseff, J.R., Street, R.L.: Visualization studies of a shear driven three-dimensional recirculating flow. J. Fluids Eng. 106, 21–29 (1984)

    Article  Google Scholar 

  194. Koseff, J.R., Street, R.L.: On endwall effects in a lid-driven cavity flow. J. Fluids Eng. 106, 385–389 (1984)

    Article  Google Scholar 

  195. Koseff, J.R., Street, R.L.: The lid-driven cavity flow: a synthesis of qualitative and quantitative observations. J. Fluids Eng. 106, 390–398 (1984)

    Article  Google Scholar 

  196. Koseff, J.R., Street, R.L., Gresho, P.M., Upson, C.D., Humphrey, J.A.C., To, W.-M.: A three-dimensional lid-driven cavity flow: Experiment and simulation. In: Taylor, C. (ed) Proceedings of the 3rd International Conference on Numerical Methods in Laminar and Turbulent Flow, pp. 564–581, Swansea. Pineridge Press (1983)

    Google Scholar 

  197. Koseff, J.R., Prasad, A.K., Perng, C., Street, R.L.: Complex cavities: Are two dimensions sufficient for computation? Phys. Fluids A 2, 619–622 (1990)

    Article  Google Scholar 

  198. Koseff, R.J., Street, R.L.: Circulation structure in a stratified cavity flow. J. Hydraul. Eng. 111, 334–354 (1985)

    Article  Google Scholar 

  199. Kosinski, P., Kosinska, A., Hoffmann, A.C.: Simulation of solid particles behaviour in a driven cavity flow. Powder Technol. 191, 327–339 (2009)

    Article  Google Scholar 

  200. Kuhlmann, H.C., Albensoeder, S.: Stability of the steady three-dimensional lid-driven flow in a cube and the supercritical flow dynamics. Phys. Fluids 26, 024104–1–024104–11 (2014)

    Article  Google Scholar 

  201. Kuhlmann, H.C., Wanschura, M., Rath, H.J.: Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures. J. Fluid Mech. 336, 267–299 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  202. Kuhlmann, H.C., RomanĂ², F., Wu, H., Albensoeder, S.: Particle-motion attractors due to particle-boundary interaction in incompressible steady three-dimensional flows. In: Ivey, G., Zhou, T., Jones, N., Draper, S. (eds) The 20th Australasian Fluid Mechanics Conference, p. 102, Paper no. 449. Australasian Fluid Mechanics Society (2016)

    Google Scholar 

  203. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand. 45, 255–282 (1950)

    Article  MathSciNet  Google Scholar 

  204. Landahl, M.T.: Wave breakdown and turbulence. SIAM J. Appl. Math. 28, 735–756 (1975)

    Article  MATH  Google Scholar 

  205. LarchevĂªque, L., Sagaut, P., LĂª, T.-H., Comte, P.: Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number. J. Fluid Mech. 516, 265–301 (2004)

    Article  MATH  Google Scholar 

  206. Leong, C.W., Ottino, J.M.: Experiments on mixing due to chaotic advection in a cavity. J. Fluid Mech. 209, 463–499 (1989)

    Article  MathSciNet  Google Scholar 

  207. Leray, J.: Etude de diverses equations integrales non lineaires et de quelques problemes que pose l’Hydrodynamique. J. Math. Pures et Appl. 12, 1–82 (1933)

    MATH  Google Scholar 

  208. Leriche, E.: Direct numerical simulation in a lid-driven cubical cavity at high Reynolds number by a Chebyshev spectral method. J. Sci. Comput. 27, 335–345 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  209. Leriche, E., Gavrilakis, S.: Direct numerical simulation of the flow in a lid-driven cubical cavity. Phys. Fluids 12, 1363–1376 (2000)

    Article  MATH  Google Scholar 

  210. Leriche, E., Labrosse, G.: High-order direct Stokes solvers with or without temporal splitting: numerical investigations of their comparative properties. SIAM J. Sci. Comput. 22, 1386–1410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  211. Leriche, E., Labrosse, G.: Are there localized eddies in the trihedral corners of the Stokes eigenmodes in cubical cavity? Comput. Fluids 43, 98–101 (2011)

    Article  MATH  Google Scholar 

  212. Li, M., Tang, T.: Steady viscous flow in a triangular cavity by efficient numerical techniques. Comput. Math. Appl. 31, 55–65 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  213. Liberzon, A., Feldman, Y., Gelfgat, A.Y.: Experimental observation of the steady-oscillatory transition in a cubic lid-driven cavity. Phys. Fluids 23, 084106–1–084106–7 (2011)

    Article  Google Scholar 

  214. Lin, L.-S., Chen, Y.-C., Lin, C.-A.: Multi relaxation time lattice Boltzmann simulations of deep lid driven cavity flows at different aspect ratios. Comp. Fluids 45, 233–240, (2011)

    Article  MATH  Google Scholar 

  215. Liu, C.H., Joseph, D.D.: Stokes flow in conical trenches. SIAM J. Appl. Math. 34, 286–296 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  216. Liu, M., Muzzio, F.J., Peskin, R.L.: Quantification of mixing in aperiodic chaotic flows. Chaos Solitons Fractals 4, 869–893 (1994)

    Article  MATH  Google Scholar 

  217. Liu, M., Peskin, R.L., Muzzio, F.J., Leong, C.W.: Structure of the stretching field in chaotic cavity flows. AIChE J. 40, 1273–1286 (1994)

    Article  Google Scholar 

  218. Liu, Q., GĂ³mez, F., Theofilis, V.: Linear instability analysis of incompressible flow over a cuboid cavity. Procedia IUTAM 14, 511–518 (2015)

    Article  Google Scholar 

  219. Loiseau, J.-C.: Analyse de la stabilité globale et de la dynamique d’écoulements tridimensionnels (Dynamics and global stability analyses of three-dimensional flows). PhD thesis, l’École Nationale Supérieur d’Arts et Métiers (2014)

    Google Scholar 

  220. Loiseau, J.C., Robinet, J.C., Leriche, E.: Intermittency and transition to chaos in the cubical lid-driven cavity flow. Fluid Dyn. Res. 061421–1–061421–11 (2016)

    Google Scholar 

  221. Lopez, J.M., Welfert, B.D., Wu, K., Yalim, J.: Transition to complex dynamics in the cubic lid-driven cavity. Phys. Rev. Fluids 2, 074401–1–074401–23 (2017)

    Google Scholar 

  222. Ma, H., Ruth, D.: A new scheme for vorticity computations near a sharp corner. Comput. Fluids 23, 23–38 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  223. Malhotra, C.P., Weidman, P.D., Davis, A.M.J.: Nested toroidal vortices between concentric cones. J. Fluid Mech. 522, 117–139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  224. Marcus, P.S., Tuckerman, L.S.: Simulation of flow between concentric rotating spheres. part 2. transitions. J. Fluid Mech. 185, 31–65 (1987)

    Article  MATH  Google Scholar 

  225. Maull, D.J., East, L.F.: Three-dimensional flow in cavities. J. Fluid Mech. 16, 620–632 (1963)

    Article  MATH  Google Scholar 

  226. McIlhany, K.L., Mott, D., Oran, E., Wiggins, S.: Optimizing mixing in lid-driven flow designs through predictions from Eulerian indicators. Phys. Fluids 23, 082005–01–082005–13 (2011)

    Article  Google Scholar 

  227. Mezić, I., Wiggins, S.: On the integrability and perturbation of three-dimensional fluid flows with symmetry. J. Nonlinear Sci. 4, 157–194 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  228. Migeon, C.: Details on the start-up development of the Taylor–Gortler like vortices inside a square-section lid-driven cavity for \(1,000 \le {R}e \le 3,200\). Exp. Fluids 33, 594–602 (2002)

    Article  Google Scholar 

  229. Migeon, C., Texier, A., Pineau, G.: Effects of lid-driven cavity shape on the flow establishment phase. J. Fluids Struct. 14, 469–488 (2000)

    Article  Google Scholar 

  230. Migeon, C., Pineau, G., Texier, A.: Three-dimensionality development inside standard parallelepipedic lid-driven cavities at \({R}e=1000\). J. Fluids Struct. 17, 717–738 (2003)

    Article  Google Scholar 

  231. Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1–18 (1964)

    Article  MATH  Google Scholar 

  232. Moffatt, H.K.: Viscous eddies near a sharp corner. Arch. Mech. Stosow. 16, 365–372 (1964)

    MathSciNet  MATH  Google Scholar 

  233. Moffatt, H.K.: Singularities in Fluid Dynamics and their Resolution, vol. 1973. Lecture Notes in Mathematics, pp. 157–166. Springer, Berlin (2001)

    Google Scholar 

  234. Moffatt, H.K., Duffy, B.R.: Local similarity solutions and their limitations. J. Fluid Mech. 96, 299–313 (1980)

    Article  MATH  Google Scholar 

  235. Moffatt, H.K., Mak, V.: Corner singularities in three-dimensional Stokes flow. In: Durban, D., Pearson, J.R.A. (eds) Symposium on non-linear singularities in deformation and flow, pp. 21–26, Netherland. IUTAM, Kluwer Academic Publishers (1999)

    Chapter  MATH  Google Scholar 

  236. Mohamad, A.A., Viskanta, R.: Transient low Prandtl number fluid convection in a lid-driven cavity. Numer. Heat Transf. A 19, 187–205 (1991)

    Article  Google Scholar 

  237. Mohamad, A.A., Viskanta, R.: Flow and heat transfer in a lid-driven cavity filled with a stably stratified fluid. Appl. Math. Model. 19, 465–472 (1995)

    Article  MATH  Google Scholar 

  238. Moore, D.W., Saffman, P.G.: The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346, 413–425 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  239. Neary, M.D., Stephanoff, D.: Shear-layer-driven transition in a rectangular cavity. Phys. Fluids 30, 2936–2946 (1987)

    Article  Google Scholar 

  240. Nobile, E.: Simulation of time-dependent flow in cavities with the additive-correction multigrid method, part I: mathematical formulation. Numer. Heat Transf. B 30, 341–350 (1996)

    Article  Google Scholar 

  241. Noor, D.Z., Kanna, P.R., Chern, M.-J.: Flow and heat transfer in a driven square cavity with double-sided oscillating lids in anti-phase. Int. J. Heat Mass Transf. 52, 3009–3023 (2009)

    Article  MATH  Google Scholar 

  242. Nuriev, A.N., Egorov, A.G., Zaitseva, O.N.: Bifurcation analysis of steady-state flows in the lid-driven cavity. Fluid Dyn. Res. 48, 061405-1–061405-15 (2016)

    Article  MathSciNet  Google Scholar 

  243. Ohmichi, Y., Suzuki, K.: Compressibility effects on the first global instability mode of the vortex formed in a regularized lid-driven cavity flow. Comput. Fluids 145, 1–7 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  244. Ottino, J.M., Leong, C.W., Rising, H., Swanson, P.D.: Morphological structures produced by mixing in chaotic flows. Nature 333, 419–425 (1988)

    Article  Google Scholar 

  245. Ottino, J.M., Muzzio, F.J., Tjahjadi, M., Franjione, J.G., Jana, S.C., Kusch, H.A.: Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing processes. Science 257, 754–760 (1992)

    Article  Google Scholar 

  246. Oztop, H.F.: Combined convection heat transfer in a porous lid-driven enclosure due to heater with finite length. Int. Commun. Heat Mass Transf. 33, 772–779 (2006)

    Article  Google Scholar 

  247. Oztop, H.F., Dagtekin, I.: Mixed convection in two-sided lid-driven differentially heated square cavity. Int. J. Heat Mass Transf. 47, 1761–1769 (2004)

    Article  MATH  Google Scholar 

  248. Oztop, H.F., Varol, A.: Combined convection in inclined porous lid-driven enclosures with sinusoidal thermal boundary condition on one wall. Prog. Comput. Fluid Dyn. 9, 127–131 (2009)

    Article  Google Scholar 

  249. Oztop, H.F., Zhao, Z., Yu, B.: Fluid flow due to combined convection in lid-driven enclosure having a circular body. Int. J. Heat Fluid Flow 30, 886–901 (2009)

    Article  Google Scholar 

  250. Oztop, H.F., Zhao, Z., Yu, B.: Conduction-combined forced and natural convection in lid-driven enclosures divided by a vertical solid partitionstar, open. Int. Commun. Heat Mass Transf. 36, 661–668 (2009)

    Article  Google Scholar 

  251. Pakdel, P., McKinley, G.H.: Elastic instability and curved streamlines. Phys. Rev. Lett. 77, 2459–2462 (1996)

    Article  Google Scholar 

  252. Pakdel, P., McKinley, G.H.: Cavity flows of elastic liquids: purely elastic instabilities. Phys. Fluids 10, 1058–1070 (1998)

    Article  Google Scholar 

  253. Pakdel, P., Spiegelberg, S.H., McKinley, G.H.: Cavity flows of elastic liquids: two-dimensional flows. Phys. Fluids 9, 3123–3140 (1997)

    Article  Google Scholar 

  254. Pan, F., Acrivos, A.: Steady flows in rectangular cavities. J. Fluid Mech. 28, 643–655 (1967)

    Article  Google Scholar 

  255. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ (1980)

    MATH  Google Scholar 

  256. Pasquim, B.M., Mariani, V.C.: Solutions for incompressible viscous flow in a triangular cavity using cartesian grid method. Comput. Model. Eng. Sci. 35, 113–132 (2008)

    MathSciNet  MATH  Google Scholar 

  257. Patel, D.K., Das, M.K.: LES of incompressible turbulent flow inside a cubical cavity driven by two parallel lids moving in opposite direction. Int. J. Heat Mass Transf. 67, 1039–1053 (2013)

    Article  Google Scholar 

  258. Patel, D.K., Das, M.K., Roy, S.: LES of turbulent flow in a cubical cavity with two parallel lids moving in opposite direction. Int. J. Heat Mass Transf. 72, 37–49 (2014)

    Article  Google Scholar 

  259. Peng, Y.-F., Shiau, Y.-H., Hwang, R.R.: Transition in a 2-D lid-driven cavity flow. Comput. Fluids 32, 337–352 (2003)

    Article  MATH  Google Scholar 

  260. Peplinski, A., Schlatter, P., Fischer, P.F. Henningson, D.S. Stability tools for the spectral-element code Nek5000: application to jet-in-crossflow. In: Spectral and High Order Methods for Partial Differential Equations-ICOSAHOM 2012, pp. 349–359. Springer, Berlin (2014)

    MATH  Google Scholar 

  261. Peplinski, A., Schlatter, P., Henningson, D.S.: Global stability and optimal perturbation for a jet in cross-flow. Eur. J. Mech. B/Fluids 49, 438–447 (2015)

    Article  MathSciNet  Google Scholar 

  262. Pierrehumbert, R.T.: Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 2157–2159 (1986)

    Article  Google Scholar 

  263. Poliashenko, M., Aidun, C.K.: A direct method for computation of simple bifurcations. J. Comput. Phys. 121, 246–260 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  264. Povitsky, A.: Three-dimensional flow in cavity at yaw. Technical Report NASA/CR-2001-211232, ICASE Report No. 2001–31, ICASE, NASA Langley Research Center, ICASE, Hampton, Virginia (2001)

    Google Scholar 

  265. Povitsky, A.: Three-dimensional flow in cavity at yaw. Nonlinear Analysis 63, e1573–e1584 (2005)

    Article  MATH  Google Scholar 

  266. Povitsky, A.: Three-dimensional flow with elevated helicity in driven cavity by parallel walls moving in perpendicular directions. Phys. Fluids 29, 083601-1–083601-11 (2017)

    Article  MathSciNet  Google Scholar 

  267. Prandtl, L.: Ăœber FlĂ¼ssigkeitsbewegung bei sehr kleiner Reibung. In: Verhdlg. III Intern. Math.-Kongr., pp. 484–491, Leipzig. Teubner (1904)

    Google Scholar 

  268. Prasad, A.K., Koseff, J.R.: Reynolds number and end-wall effects on a lid-driven cavity flow. Phys. Fluids A 1, 208–218 (1989)

    Article  Google Scholar 

  269. Prasad, A.K., Koseff, J.R.: Combined forced and natural convection heat transfer in a deep lid-driven cavity flow. Int. J. Heat Fluid Flow 17, 460–467 (1996)

    Article  Google Scholar 

  270. Ramanan, N., Homsy, G.M.: Linear stability of lid-driven cavity flow. Phys. Fluids 6, 2690–2701 (1994)

    Article  MATH  Google Scholar 

  271. Rao, P., Duggleby, A., Stremler, M.A.: Mixing analysis in a lid-driven cavity flow at finite Reynolds numbers. ASME J. Fluids Eng. 134, 041203-1–041203-8 (2012)

    Article  Google Scholar 

  272. Rayleigh, L.: On the dynamics of revolving fluids. In: Scientific Papers VI, pp. 447–453. Cambridge University Press, Cambridge (1920)

    Google Scholar 

  273. Riedler, J., Schneider, W.: Viscous flow in corner regions with a moving wall and leakage of fluid. Acta Mech. 48, 95–102 (1983)

    Article  MATH  Google Scholar 

  274. Rockwell, D.D., Naudascher, E.E.: Review – self-sustaining oscillations of flow past cavities. ASME J. Fluids Eng. 100, 152–165 (1978)

    Article  Google Scholar 

  275. RomanĂ², F., Kuhlmann, H.C.: Numerical investigation of the interaction of a finite-size particle with a tangentially moving boundary. Int. J. Heat Fluid Flow 62(Part A), 75–82 (2016)

    Article  Google Scholar 

  276. RomanĂ², F., Kuhlmann, H.C.: Particle-boundary interaction in a shear-driven cavity flow. Theor. Comput. Fluid Dyn. 31, 427–445 (2017)

    Article  Google Scholar 

  277. RomanĂ², F., Albensoeder, S., Kuhlmann, H.C.: Topology of three-dimensional steady cellular flow in a two-sided anti-parallel lid-driven cavity. J. Fluid Mech. 826, 302–334 (2017)

    Article  MathSciNet  Google Scholar 

  278. Rossiter, J.E.: Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Technical Report 64037, Royal Aircraft Establishment (1964)

    Google Scholar 

  279. Safdari, A., Kim, K.C.: Lattice Boltzmann simulation of solid particles behavior in a three-dimensional lid-driven cavity flow. Comput. Math. Appl. 68, 606–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  280. Sahin, M., Owens, R.G.: A novel fully-implicit finite volume method applied to the lid-driven cavity problem part ii: linear stability analysis. Int. J. Numer. Methods Fluids 42, 79–88 (2003)

    Article  MATH  Google Scholar 

  281. Sano, O., Hasimoto, H.: Three-dimensional Moffatt-type eddies due to a Stokeslet in a corner. J. Phys. Soc. Japan 48, 1763–1768 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  282. Schimmel, F., Albensoeder, S., Kuhlmann, H.: Stability of thermocapillary-driven flow in rectangular cavities. Proc. Appl. Math. Mech. 5, 583–584 (2005)

    Article  Google Scholar 

  283. Schneider, T.M., Gibson, J.F., Lagha, M., Lillo, F.D., Eckhardt, B.: Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301-1–037301-4 (2008)

    Google Scholar 

  284. Schreiber, R., Keller, H.B.: Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49, 310–333 (1983)

    Article  MATH  Google Scholar 

  285. Schultz, W.W., Lee, N.Y., Boyd, J.P.: Chebyshev pseudosprectral method of viscous flows with corner singularities. J. Sci. Comput. 4, 1–24 (1989)

    Article  MATH  Google Scholar 

  286. Schumack, M.R., Schultz, W.W., Boyd, J.P.: Spectral method solution of the Stokes equations on nonstaggered grids. J. Comput. Phys. 94, 30–58 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  287. Scott, J.F.: Moffatt-type flows in a trihedral cone. J. Fluid Mech. 725, 446–461 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  288. Scriven, L.E., Sternling, C.V.: The Marangoni effects. Nature 187, 186–188 (1960)

    Article  Google Scholar 

  289. Serrin, J.: On the stability of viscous fluid motions. Arch. Ration. Mech. Anal. 3, 1–13 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  290. Shankar, P.N.: On Stokes flow in a semi-infinite wedge. J. Fluid Mech. 422, 69–90 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  291. Shankar, P.N.: Moffatt eddies in the cone. J. Fluid Mech. 539, 113–135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  292. Shankar, P.N.: Slow Viscous Flows. Imperial College Press, London (2007)

    Book  Google Scholar 

  293. Shankar, P.N., Deshpande, M.D.: Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32, 93–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  294. Shankar, P.N., Nikiforovich, E.I.: Slow mixed convection in rectangular containers. J. Fluid Mech. 471, 203–217 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  295. Shatrov, V., Mutschke, G., Gerbeth, G.: Three-dimensional linear stability analysis of lid-driven magnetohydrodynamic cavity flow. Phys. Fluids 15, 2141–2151 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  296. Shen, J.: Hopf bifurcation of the unsteady regularized driven cavity flow. J. Comput. Phys. 95, 228–245 (1991)

    Article  MATH  Google Scholar 

  297. Sheu, T.W.H., Tsai, S.F.: Flow topology in a steady three-dimensional lid-driven cavity. Comput. Fluids 31, 911–934 (2002)

    Article  MATH  Google Scholar 

  298. Sidik, N.A.C., Attarzadeh, S.M.R.: An accurate numerical prediction of solid particle fluid flow in a lid-driven cavity. Int. J. Mech. 5, 123–128 (2011)

    Google Scholar 

  299. Siegmann-Hegerfeld, T.: Wirbelinstabilitäten und Musterbildung in geschlossenen Rechteckbehältern mit tangential bewegten Wänden (in German). PhD thesis, TU Wien (2010)

    Google Scholar 

  300. Siegmann-Hegerfeld, T., Albensoeder, S., Kuhlmann, H.C.: Two- and three-dimensional flows in nearly rectangular cavities driven by collinear motion of two facing walls. Exp. Fluids 45, 781–796 (2008)

    Article  Google Scholar 

  301. Siegmann-Hegerfeld, T., Albensoeder, S., Kuhlmann, H.C.: Three-dimensional flow in a lid-driven cavity with width-to-height ratio of 1.6. Exp. Fluids 54, 1526–1–1526–10 (2013)

    Google Scholar 

  302. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42, 267–293 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  303. Sousa, R., Poole, R., Afonso, A., Pinho, F., Oliveira, P., Morozov, A., Alves, M.: Lid-driven cavity flow of viscoelastic liquids. J. Non-Newton. Fluid Mech. 234, 129–138 (2016)

    Article  MathSciNet  Google Scholar 

  304. Spasov, Y., Herrero, J., Grau, F.X., Giralt, F.: Linear stability analysis and numerical calculations of the lid-driven flow in a toroidally shaped cavity. Phys. Fluids 15, 134–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  305. Stremler, M.A., Chen, J.: Generating topological chaos in lid-driven cavity flow. Phys. Fluids 19, 103602-1–103602-6 (2007)

    Article  MATH  Google Scholar 

  306. Symm, G.T.: Treatment of Singularities in the Solution of Laplace’s Equation by an Integral Equation Method. National Physical Laboratory, Division of Numerical Analysis and Computing (1973)

    Google Scholar 

  307. Tang, L.Q., Cheng, T., Tsang, T.T.H.: Transient solutions for three-dimensional lid-driven cavity flows by a least-squares finite element method. Int. J. Numer. Methods Fluids 21, 413–432 (1995)

    Article  MATH  Google Scholar 

  308. Taylor, G.I.: Similarity solutions of hydrodynamic problems. In: Aeronautics and Astronautics (Durand Anniversary Volume), pp. 21–28. Pergamon (1960)

    Google Scholar 

  309. Taylor, G.I.: On scraping viscous fluid from a plane surface. In: Batchelor, G.K (ed), The Scientific Papers of Sir Geoffrey Ingram Taylor (1962)

    Google Scholar 

  310. Teixeira, C.M.: Digital physics simulations of lid-driven cavity flow. Int. J. Mod. Phys. C 8, 685–696 (1997)

    Article  Google Scholar 

  311. Theofilis, V.: Globally unstable basic flows in open cavities. In: 6th AIAA/CEAS Aeroacoustics Conference, pp. AIAA 2000–1965, Reston, VA. AIAA (2000)

    Google Scholar 

  312. Theofilis, V.: Global linear instability. Annu. Rev. Fluid Mech. 43, 319–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  313. Theofilis, V., Colonius, T.: An algorithm for the recovery of 2- and 3-D BiGlobal instabilities of compressible flow over 2-D open cavities. In: 33rd Fluid Dynamics Conference and Exhibit, vol. 39, pp. AIAA 2003–4143, Reston, VA. AIAA (2003)

    Google Scholar 

  314. Theofilis, V., Duck, P.W., Owen, J.: Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249–286 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  315. Thiffeault, J.-L., Gouillart, E., Dauchot, O.: Moving walls accelerate mixing. Phys. Rev. E 84, 036313-1–036313-8 (2011)

    Google Scholar 

  316. Tiesinga, G., Wubs, F.W., Veldman, A.E.P.: Bifurcation analysis of incompressible flow in a driven cavity by the Newton-Picard method. J. Comput. Appl. Math. 140, 751–772 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  317. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Intl J. Heat Mass Transf. 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  318. Torrance, K., Davis, R., Eike, K., Gill, P., Gutman, D., Hsui, A., Lyons, S., Zien, H.: Cavity flows driven by buoyancy and shear. J. Fluid Mech. 51, 221–231 (1972)

    Article  Google Scholar 

  319. Tranter, C.J.: The use of the Mellin transform in finding the stress distribution in an infinite wedge. Q. J. Mech. Appl. Math. 1, 125–130 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  320. Tsorng, S.J., Capart, H., Lai, J.S., Young, D.L.: Three-dimensional tracking of the long time trajectories of suspended particles in a lid-driven cavity flow. Exp. Fluids 40, 314–328 (2006)

    Article  Google Scholar 

  321. Tsorng, S.J., Capart, H., Lo, D.C., Lai, J.S., Young, D.L.: Behaviour of macroscopic rigid spheres in lid-driven cavity flow. Int. J. Multiph. Flow 34, 76–101 (2008)

    Article  Google Scholar 

  322. van Lenthe, J.H., Pulay, P.: A space-saving modification of Davidson’s eigenvector algorithm. J. Comput. Chem. 11, 1164–1168 (1990)

    Article  MathSciNet  Google Scholar 

  323. Vandeven, H.: Family of spectral filters for discontinous problems. J. Sci. Comput. 6, 159–192 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  324. Verstappen, R., Wissink, J.G., Veldman, A.E.E.: Direct numerical simulation of driven cavity flows. Appl. Sci. Res. 51, 377–381 (1993)

    Article  MATH  Google Scholar 

  325. Verstappen, R., Wissink, J.G., Cazemier, W., Veldman, A.E.P.: Direct numerical simulations of turbulent flow in a driven cavity. Future Gener. Comput. Syst. 10, 345–350 (1994)

    Article  Google Scholar 

  326. Vogel, M.J., Hirsa, A.H., Lopez, J.M.: Spatio-temporal dynamics of a periodically driven cavity flow. J. Fluid Mech. 478, 197–226 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  327. Wahba, E.M.: Multiplicity of states for two-sided and four-sided lid driven cavity flows. Comput. Fluids 38, 247–253 (2009)

    Article  MATH  Google Scholar 

  328. Wakiya, S.: Axisymmetric flow of a viscous fluid near the vertex of a body. J. Fluid Mech. 78, 737–747 (1976)

    Article  MATH  Google Scholar 

  329. Waleffe, F.: On the three-dimensional instability of strained vortices. Phys. Fluids A 2, 76–80 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  330. Wesseling, P.: A Robust and Efficient Multigrid Method, vol. 960, pp. 614–630. Springer, Berlin (1982)

    Google Scholar 

  331. Xu, B., Gilchrist, J.F.: Shear migration and chaotic mixing of particle suspensions in a time-periodic lid-driven cavity. Phys. Fluids 22, 053301-1–053301-7 (2010)

    Article  MATH  Google Scholar 

  332. Yang, X., Forest, M.G., Mullins, W., Wang, Q.: 2-D lid-driven cavity flow of nematic polymers: an unsteady sea of defects. Soft Matter 6, 1138–1156 (2010)

    Article  Google Scholar 

  333. Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5, 3186–3196 (1993)

    Article  MATH  Google Scholar 

  334. Zang, Y., Street, R.L., Koseff, J.R.: A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 18–33 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  335. Zhou, Y.C., Patnaik, B.S.V., Wan, D.C., Wei, G.W.: DSC solution for flow in a staggered double lid driven cavity. Int. J. Numer. Methods Eng. 57, 211–234 (2003)

    Article  MATH  Google Scholar 

  336. Znaien, J., Speetjens, M.F.M., Trieling, R.R., Clercx, H.J.H.: Observability of periodic lines in three-dimensional lid-driven cylindrical cavity flows. Phys. Rev. E 85, 066320–1–066320–14 (2012)

    Google Scholar 

Download references

Acknowledgements

We are very grateful to S. Albensoeder, F. Auteri, O. Botella, R. Bouffanais, C.-H. Bruneau, G. Courbebaisse, J. R. Koseff, E. Leriche, J.-C. Loiseau, J. M. Lopez, H. K. Moffatt, J. M. Ottino, A. Povitsky, W. W. Schultz, J. F. Scott and T. W. H. Sheu, who kindly allowed the reproduction of their figures which have been published earlier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik C. Kuhlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuhlmann, H.C., RomanĂ², F. (2019). The Lid-Driven Cavity. In: Gelfgat, A. (eds) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Computational Methods in Applied Sciences, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-91494-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91494-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91493-0

  • Online ISBN: 978-3-319-91494-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics