Skip to main content

Unstable Periodically Forced Navier–Stokes Solutions–Towards Nonlinear First-Principle Reduced-Order Modeling of Actuator Performance

  • Chapter
  • First Online:
  • 1501 Accesses

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 50))

Abstract

We advance the computation of physical modal expansions for unsteady incompressible flows. Point of departure is a linearization of the Navier–Stokes equations around its fixed point in a frequency domain formulation. While the most amplified stability eigenmode is readily identified by a power method, the technical challenge is the computation of more damped higher-order eigenmodes. This challenge is addressed by a novel method to compute unstable periodically forced solutions of the linearized Navier–Stokes solution. This method utilizes two key enablers. First, the linear dynamics is transformed by a complex shift of the eigenvalues amplifying the flow response at the given frequency of interest. Second, the growth rate is obtained from an iteration procedure. The method is demonstrated for several wake flows around a circular cylinder, a fluidic pinball, i.e. the wake behind a cluster of cylinders, a wall-mounted cylinder, a sphere and a delta wing. The example of flow control with periodic wake actuation and forced physical modes paves the way for applications of physical modal expansions. These results encourage Galerkin models of three-dimensional flows utilizing Navier–Stokes based modes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Landau, L.D.: On the problem of turbulence. C.R. Acad. Sci. USSR 44, 311–314 (1944)

    MathSciNet  MATH  Google Scholar 

  2. Hopf, E.: A mathematical example displaying features of turbulence. Commun. Pure Appl. Math. 1, 303–322 (1948)

    Article  MathSciNet  Google Scholar 

  3. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25–52 (1978)

    Article  MathSciNet  Google Scholar 

  4. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)

    Article  MathSciNet  Google Scholar 

  5. Newhouse, S., Ruelle, D., Takens, F.: Occurence of strange Axiom-A attractors near quasiperiodic flow on \(t^m\), \(m \le 3\). Commun. Math. Phys. 64, 35 (1978)

    Article  Google Scholar 

  6. Pomeaou, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  MathSciNet  Google Scholar 

  7. Åkervik, E., Hœpffner, J., Ehrenstein, U., Henningson, D.S.: Optimal growth, model reduction and control in separated boundary-layer flow using global eigenmodes. J. Fluid Mech. 579, 305–314 (2007)

    Article  MathSciNet  Google Scholar 

  8. Noack, B.R., Afanasiev, K., Morzyński, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)

    Article  MathSciNet  Google Scholar 

  9. Grosch, C.E., Salwen, H.: The continuous spectrum of the Orr–Sommerfeld equation. Part I. The spectrum and the eigenfunctions. J. Fluid Mech. 87, 33–54 (1978)

    Article  MathSciNet  Google Scholar 

  10. Salwen, H., Grosch, C.E.: The continuous spectrum of the Orr–Sommerfeld equation. Part 2. Eigenfunction expansions. J. Fluid Mech. 104, 445–465 (1981)

    Article  MathSciNet  Google Scholar 

  11. Taira, K., Brunton, S.L., Dawson, S., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyew, S., Theofilis, V., Ukeiley, L.S.: Modal analysis of fluid flows: an overview. AIAA. J. 55(12), 4013–4041 (2017)

    Article  Google Scholar 

  12. Theofilis, V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39(4), 249–315 (2003)

    Article  Google Scholar 

  13. Theofilis, V.: Global linear instability. Ann. Rev. Fluid Mech. 43, 319–352 (2011)

    Article  MathSciNet  Google Scholar 

  14. Wolter, D., Morzyński, M., Schütz, H., Thiele, F.: Numerische Untersuchungen zur Stabilität der Kreiszylinderumströmung. Z. Angew. Math. Mech. 69, T601–T604 (1989)

    Google Scholar 

  15. Morzyński, M., Afanasiev, K., Thiele, F.: Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis. Comput. Methods Appl. Mech. Eng. 169(1), 161–176 (1999)

    Article  Google Scholar 

  16. Morzyński, M., Thiele, F.: 3D FEM global stability analysis of viscous flow. Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 4967, pp. 1293–1302. Springer, Berlin (2008)

    Chapter  Google Scholar 

  17. Gómez, F., Pérez, J.M., Blackburn, H.M., Theofilis, V.: On the use of matrix-free shift-invert strategies for global flow instability analysis. Aerosp. Sci. Technol. 44, 69–76 (2015)

    Article  Google Scholar 

  18. Liu, Q., Gómez, F., Pérez, J.M., Theofilis, V.: Instability and sensitivity analysis of flows using openfoam. Chin. J. Aeronaut. 29(2), 316–325 (2016)

    Article  Google Scholar 

  19. Semeraro, O., Bagheri, S., Brandt, L., Henningson, D.S.: Feedback control of three-dimensional optimal disturbances using reduced-order models. J. Fluid Mech. 677, 63–102 (2011)

    Article  MathSciNet  Google Scholar 

  20. Garnaud, X., Lesshafft, L., Schmid, P.J., Huerre, P.: The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189–202 (2013)

    Article  MathSciNet  Google Scholar 

  21. Åkervik, E., Hœpffner, J., Ehrenstein, U., Henningson, D.S.: Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes. J. Fluid Mech. 579, 305–314 (2007)

    Article  MathSciNet  Google Scholar 

  22. Chomaz, J.M.: Global instabilities in spatially developing flows: non-normality and nonlinearity. Ann. Rev. Fluid Mech. 37, 357–392 (2005)

    Article  MathSciNet  Google Scholar 

  23. Qu, Z.Q.: Model Order Reduction Techniques with Applications in Finite Element Analysis. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  24. Wilson, E.L., Yuan, M.W., Dickens, J.M.: Dynamic analysis by direct superposition of Ritz vectors. Earthq. Eng. Struct. Dyn. 10(6), 813–821 (1982)

    Article  Google Scholar 

  25. Taylor, C., Hood, P.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1(1), 73–100 (1973)

    Article  MathSciNet  Google Scholar 

  26. Noack, B.R., Morzyński, M.: The fluidic pinball — a toolkit for multiple-input multiple-output flow control (version 1.0). Technical report 02/2017, Chair of Virtual Engineering, Poznan University of Technology, Poland (2017)

    Google Scholar 

  27. Åkervik, E., Brandt, L., Henningson, D.S., Hœpffner, J., Marxen, O., Schlatter, P.: Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18(6), 068102 (2006)

    Article  Google Scholar 

  28. Thiria, B., Goujon-Durand, S., Wesfreid, J.E.: The wake of a cylinder performing rotary oscillations. J. Fluid Mech. 560, 123–147 (2006)

    Article  Google Scholar 

  29. Cornejo Maceda, G.Y.: Machine learning control applied to wake stabilization. M2 Master of Science Internship Report, LIMSI and ENSAM, Paris, France (2017)

    Google Scholar 

  30. Tadmor, G., Lehmann, O., Noack, B.R., Cordier, L., Delville, J., Bonnet, J.P., Morzyński, M.: Reduced-order models for closed-loop wake control. Philos. Trans. R. Soci. Lond. A Math. Phys. Eng. Sci. 369(1940), 1513–1524 (2011)

    Article  MathSciNet  Google Scholar 

  31. Brunton, S.L., Noack, B.R.: Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67(5), 050801:01–050801:48 (2015)

    Article  Google Scholar 

  32. Luchtenburg, D.M., Günter, B., Noack, B.R., King, R., Tadmor, G.: A generalized mean-field model of the natural and actuated flows around a high-lift configuration. J. Fluid Mech. 623, 283–316 (2009)

    Article  MathSciNet  Google Scholar 

  33. Luchini, P., Bottaro, A.: Adjoint equations in stability analysis. Ann. Rev. Fluid Mech. 46(1), 493–517 (2014)

    Article  MathSciNet  Google Scholar 

  34. Michalke, A.: On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521–561 (1965)

    Article  MathSciNet  Google Scholar 

  35. Barkley, D.: Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75, 750–756 (2006)

    Article  MathSciNet  Google Scholar 

  36. Noack, B.R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P., Tadmor, G.: A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilibr. Thermodyn. 33, 103–148 (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the Polish National Science Center (NCN) under the Grant No.: DEC-2011/01/B/ST8/07264 and by the Polish National Center for Research and Development under the Grant No. PBS3/B9/34/2015 and travel support of the Bernd Noack Cybernetics Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Morzyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morzyński, M., Szeliga, W., Noack, B.R. (2019). Unstable Periodically Forced Navier–Stokes Solutions–Towards Nonlinear First-Principle Reduced-Order Modeling of Actuator Performance. In: Gelfgat, A. (eds) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Computational Methods in Applied Sciences, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-91494-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91494-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91493-0

  • Online ISBN: 978-3-319-91494-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics