Advertisement

Continuation for Thin Film Hydrodynamics and Related Scalar Problems

  • S. EngelnkemperEmail author
  • S. V. Gurevich
  • H. Uecker
  • D. Wetzel
  • U. Thiele
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 50)

Abstract

This chapter illustrates how to apply continuation techniques in the analysis of a particular class of nonlinear kinetic equations that describe the time evolution of a single scalar field like a density or interface profiles of various types. We first systematically introduce these equations as gradient dynamics combining mass-conserving and nonmass-conserving fluxes followed by a discussion of nonvariational amendmends and a brief introduction to their analysis by numerical continuation. The approach is first applied to a number of common examples of variational equations, namely, Allen-Cahn- and Cahn–Hilliard-type equations including certain thin-film equations for partially wetting liquids on homogeneous and heterogeneous substrates as well as Swift–Hohenberg and Phase-Field-Crystal equations. Second we consider nonvariational examples as the Kuramoto–Sivashinsky equation, convective Allen–Cahn and Cahn–Hilliard equations and thin-film equations describing stationary sliding drops and a transversal front instability in a dip-coating. Through the different examples we illustrate how to employ the numerical tools provided by the packages auto07p and pde2path to determine steady, stationary and time-periodic solutions in one and two dimensions and the resulting bifurcation diagrams. The incorporation of boundary conditions and integral side conditions is also discussed as well as problem-specific implementation issues.

Notes

Acknowledgements

DW thanks the Deutsche Forschungsgemeinschaft for support (DFG, Grant No. Ue60/3-1); HU thanks Jens Rademacher for discussions on suitable formulations of constraints for Hopf orbits; UT acknowledges funding by the German-Israeli Foundation for Scientific Research and Development (GIF, Grant No. I-1361-401.10/2016); and SG acknowledges partial support by DFG within PAK 943 (Project No. 332704749). We thank Daniele Avitabile, Andrew Hazel, Edgar Knobloch, and David Lloyd for frequent discussions on continuation techniques, bifurcation theory and pattern formation.

References

  1. 1.
    Achim, C.V., Ramos, J.A.P., Karttunen, M., Elder, K.R., Granato, E., Ala-Nissila, T., Ying, S.C.: Nonlinear driven response of a phase-field crystal in a periodic pinning potential. Phys. Rev. E 79, 011,606 (2009)Google Scholar
  2. 2.
    Alfaro, C., Depassier, M.: A 5-mode bifurcation-analysis of a Kuramoto-Sivashinsky equation with dispersion. Phys. Lett. A 184, 184–189 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Allen, S., Cahn, J.: Microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. Mater. 27, 1085–1095 (1979)CrossRefGoogle Scholar
  4. 4.
    Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Classics in Applied Mathematics. Society for Industrial Mathematics, Philadelphia (1987)Google Scholar
  5. 5.
    Alvarez-Socorro, A., Clerc, M., Gonzalez-Cortes, G., Wilson, M.: Nonvariational mechanism of front propagation: theory and experiments. Phys. Rev. E 95, 010,202 (2017)Google Scholar
  6. 6.
    Archer, A.J., Rauscher, M.: Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic? J. Phys. A-Math. Gen. 37, 9325–9333 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Archer, A.J., Robbins, M.J., Thiele, U., Knobloch, E.: Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids. Phys. Rev. E 86, 031,603 (2012)Google Scholar
  8. 8.
    Avitabile, D., Lloyd, D., Burke, J., Knobloch, E., Sandstede, B.: To snake or not to snake in the planar Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 9, 704–733 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bestehorn, M., Merkt, D.: Regular surface patterns on Rayleigh-Taylor unstable evaporating films heated from below. Phys. Rev. Lett. 97, 127,802 (2006)Google Scholar
  10. 10.
    Bier, S., Gavish, N., Uecker, H., Yochelis, A.: Mean field approach to first and second order phase transitions in ionic liquids. Phys. Rev. E 95, 060,201 (2017)Google Scholar
  11. 11.
    Bindel, D., Friedman, M., Govaerts, W., Hughes, J., Kuznetsov, Y.: Numerical computation of bifurcations in large equilibrium systems in matlab. J. Comput. Appl. Math. 261, 232–248 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009)CrossRefGoogle Scholar
  13. 13.
    Bordyugov, G., Engel, H.: Continuation of spiral waves. Phys. D 228, 49–58 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bortolozzo, U., Clerc, M., Residori, S.: Local theory of the slanted homoclinic snaking bifurcation diagram. Phys. Rev. E 78, 036,214 (2008)Google Scholar
  15. 15.
    Bribesh, F.A.M., Frastia, L., Thiele, U.: Decomposition driven interface evolution for layers of binary mixtures: III. two-dimensional steady film states. Phys. Fluids 24, 062,109 (2012)Google Scholar
  16. 16.
    Buono, P.L., van Veen, L., Frawley, E.: Hidden symmetry in a Kuramoto-Sivashinsky initial-boundary value problem. Int. J. Bifurc. Chaos 27(9), 1750,136 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Burke, J., Dawes, J.: Localized states in an extended Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 11, 261–284 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Burke, J., Knobloch, E.: Localized states in the generalized Swift-Hohenberg equation. Phys. Rev. E 73, 056,211 (2006)Google Scholar
  19. 19.
    Burke, J., Knobloch, E.: Homoclinic snaking: structure and stability. Chaos 17, 037,102 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Burke, J., Houghton, S., Knobloch, E.: Swift-Hohenberg equation with broken reflection symmetry. Phys. Rev. E 80, 036,202 (2009)Google Scholar
  21. 21.
    Cahn, J.W.: Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 42, 93–99 (1965)CrossRefGoogle Scholar
  22. 22.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. 1. Interfacual free energy. J. Chem. Phys. 28, 258–267 (1958)CrossRefGoogle Scholar
  23. 23.
    Cates, M., Tailleur, J.: Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015)CrossRefGoogle Scholar
  24. 24.
    Chang, H.C.: Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26, 103–136 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chen, X.D., Lu, N., Zhang, H., Hirtz, M., Wu, L.X., Fuchs, H., Chi, L.F.: Langmuir-Blodgett patterning of phospholipid microstripes: effect of the second component. J. Phys. Chem. B 110, 8039–8046 (2006)CrossRefGoogle Scholar
  26. 26.
    Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131–1198 (2009)CrossRefGoogle Scholar
  27. 27.
    Crawford, J.D., Golubitsky, M., Gomes, M.G.M., Knobloch, E., Stewart, I.M.: Boundary conditions as symmetry constraints. In: Roberts, M., Stewart, I. (eds.) Singularity Theory and Its Applications, Part II. Lecture Notes in Mathematics, vol. 1463, pp. 63–79. Springer, New York (1991)Google Scholar
  28. 28.
    Cross, M.C., Hohenberg, P.C.: Pattern formation out of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)CrossRefGoogle Scholar
  29. 29.
    Cvitanović, P., Davidchack, R.L., Siminos, E.: On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain. SIAM J. Appl. Dyn. Syst. 9(1), 1–33 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Dankowicz, H., Schilder, F.: Recipes for Continuation. Computing in Science and Engineering, vol. 11. SIAM, Philadelphia (2013). http://sourceforge.net/projects/cocotools/. Accessed 25 Feb 18
  31. 31.
    Dawes, J.H.P.: Localized pattern formation with a large-scale mode: slanted snaking. SIAM J. Appl. Dyn. Syst. 7, 186–206 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    de Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985)CrossRefGoogle Scholar
  33. 33.
    Dhooge, A., Govaerts, W., Kuznetsov, Y.: MATCONT: a matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Dhooge, A., Govaerts, W., Kuznetsov, Y., Mestrom, W., Riet, A.: CL\_MATCONT (2008). www.sourceforge.net/projects/matcont/. Accessed 25 Feb 18
  35. 35.
    Dijkstra, H.A., Wubs, F.W., Cliffe, A.K., Doedel, E., Dragomirescu, I., Eckhardt, B., Gelfgat, A.Y., Hazel, A.L., Lucarini, V., Salinger, A.G., Phipps, E.T., Sanchez-Umbria, J., Schuttelaars, H., Tuckerman, L.S., Thiele, U.: Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys. 15, 1–45 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Doedel, E.J., Oldeman, B.E.: AUTO07p: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University, Montreal (2009)Google Scholar
  37. 37.
    Doedel, E.J., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems (I) bifurcation in finite dimensions. Int. J. Bifurc. Chaos 1, 493–520 (1991)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Doedel, E.J., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems (II) bifurcation in infinite dimensions. Int. J. Bifurc. Chaos 1, 745–772 (1991)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., Wang, X.: AUTO: continuation and bifurcation software for ordinary differential equations (with HomCont) (1997). http://indy.cs.concordia.ca/auto/. Accessed 25 Feb 18
  40. 40.
    Dohnal, T., Siegl, P.: Bifurcation of eigenvalues in nonlinear problems with antilinear symmetry. J. Math. Phys. 57, 093,502 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Dohnal, T., Uecker, H.: Bifurcation of nonlinear Bloch waves from the spectrum in the nonlinear Gross-Pitaevskii equation. J. Nonlinear Sci. 26(3), 581–618 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Doi, M.: Soft Matter Physics. Oxford University Press, Oxford (2013)CrossRefGoogle Scholar
  43. 43.
    Doumenc, F., Guerrier, B.: Self-patterning induced by a solutal Marangoni effect in a receding drying meniscus. Europhys. Lett. 103, 14,001 (2013)CrossRefGoogle Scholar
  44. 44.
    Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051,605 (2004)Google Scholar
  45. 45.
    Emmerich, H., Löwen, H., Wittkowski, R., Gruhn, T., Toth, G., Tegze, G., Granasy, L.: Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview. Adv. Phys. 61, 665–743 (2012)CrossRefGoogle Scholar
  46. 46.
    Engelnkemper, S.: Nonlinear analysis of physicochemically driven dewetting – statics and dynamics. Ph.D. thesis, Westfälische Wilhelms-Universität Münster (2017)Google Scholar
  47. 47.
    Engelnkemper, S., Wilczek, M., Gurevich, S.V., Thiele, U.: Morphological transitions of sliding drops - dynamics and bifurcations. Phys. Rev. Fluids 1, 073,901 (2016)Google Scholar
  48. 48.
    Fischer, H.P., Dieterich, W.: Early-time kinetics of ordering in the presence of interactions with a concentration field. Phys. Rev. E 56, 6909–6916 (1997)CrossRefGoogle Scholar
  49. 49.
    Formica, G., Arena, A., Lacarbonara, W., Dankowicz, H.: Coupling FEM with parameter continuation for analysis of bifurcations of periodic responses in nonlinear structures. J. Comput. Nonlinear Dyn. 8(2) (2012)CrossRefGoogle Scholar
  50. 50.
    Frastia, L., Archer, A.J., Thiele, U.: Modelling the formation of structured deposits at receding contact lines of evaporating solutions and suspensions. Soft Matter 8, 11,363–11,386 (2012)CrossRefGoogle Scholar
  51. 51.
    Frisch, U., Bec, J.: Burgulence. In: Lesieur, M., Yaglom, A., David, F. (eds.) New trends in turbulence: nouveaux aspects, Les Houches - Ecole d’Ete de Physique Theorique, vol. 74, pp. 341–383. Springer, Berlin (2001)Google Scholar
  52. 52.
    Galvagno, M., Tseluiko, D., Lopez, H., Thiele, U.: Continuous and discontinuous dynamic unbinding transitions in drawn film flow. Phys. Rev. Lett. 112, 137,803 (2014)Google Scholar
  53. 53.
    Gavish, N.: Poisson-Nernst-Planck equations with steric effects–non-convexity and multiple stationary solutions. Phys. D 368, 50–65 (2018)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Golovin, A.A., Pismen, L.M.: Dynamic phase separation: from coarsening to turbulence via structure formation. Chaos 14, 845–854 (2004)CrossRefGoogle Scholar
  55. 55.
    Golovin, A.A., Nepomnyashchy, A.A., Davis, S.H., Zaks, M.A.: Convective Cahn-Hilliard models: from coarsening to roughening. Phys. Rev. Lett. 86, 1550–1553 (2001)CrossRefGoogle Scholar
  56. 56.
    Gomez-Solano, J.R., Boyer, D.: Coarsening in potential and nonpotential models of oblique stripe patterns. Phys. Rev. E 76, 041,131 (2007)Google Scholar
  57. 57.
    Govaerts, W.: Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia (2000)Google Scholar
  58. 58.
    Gurevich, S.V., Javaloyes, J.: Spatial instabilities of light bullets in passively-mode-locked lasers. Phys. Rev. A 96, 023,821 (2017)Google Scholar
  59. 59.
    Hazel, A., Heil, M.: oomph-lib (2017). http://oomph-lib.maths.man.ac.uk/doc/html. Accessed 25 Feb 18
  60. 60.
    Hirose, Y., Komura, S., Andelman, D.: Concentration fluctuations and phase transitions in coupled modulated bilayers. Phys. Rev. E 86, 021,916 (2012)Google Scholar
  61. 61.
    Houghton, S., Knobloch, E.: Swift-Hohenberg equation with broken cubic-quintic nonlinearity. Phys. Rev. E 84, 016,204 (2011)Google Scholar
  62. 62.
    Hyman, J.M., Nicolaenko, B.: The Kuramoto-Sivashinsky equation - a bridge between PDEs and dynamical systems. Phys. D 18, 113–126 (1986)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Jolly, M.S., Kevrekidis, I.G., Titi, E.S.: Approximate inertial manifolds for the Kuramoto-Sivashinsky equation - analysis and computations. Phys. D 44, 38–60 (1990)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1986)CrossRefGoogle Scholar
  65. 65.
    Keller, H.: Numerical solution of bifurcation and nonlinear eigenvalue problems. Application of bifurcation theory. In: Proceedings of the Advanced Seminar, Madison/Wisconsin, vol. 1976, pp. 359–384 (1977)Google Scholar
  66. 66.
    Keller, H.B.: Lectures on numerical methods in bifurcation problems. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 79. Springer, Berlin (1987)Google Scholar
  67. 67.
    Kevrekidis, I.G., Nicolaenko, B., Scovel, J.C.: Back in the saddle again - a computer-assisted study of the Kuramoto-Sivashinsky equation. SIAM J. Appl. Math. 50, 760–790 (1990)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Kliakhandler, I.L.: Long interfacial waves in multilayer thin films and coupled Kuramoto-Sivashinsky equations. J. Fluid Mech. 391, 45–65 (1999)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Kliakhandler, I.L.: Inverse cascade in film flows. J. Fluid Mech. 423, 205–225 (2000)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Köpf, M.H., Thiele, U.: Emergence of the bifurcation structure of a Langmuir-Blodgett transfer model. Nonlinearity 27, 2711–2734 (2014)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Köpf, M.H., Gurevich, S.V., Friedrich, R., Thiele, U.: Substrate-mediated pattern formation in monolayer transfer: a reduced model. New J. Phys. 14, 023,016 (2012)CrossRefGoogle Scholar
  72. 72.
    Kozyreff, G., Tlidi, M.: Nonvariational real Swift-Hohenberg equation for biological, chemical, and optical systems. Chaos 17, 037,103 (2007)CrossRefGoogle Scholar
  73. 73.
    Krauskopf, B., Osinga, H.M., Galan-Vioque, J. (eds.): Numerical Continuation Methods for Dynamical Systems. Springer, Dordrecht (2007)Google Scholar
  74. 74.
    Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356–369 (1976)CrossRefGoogle Scholar
  75. 75.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2010)Google Scholar
  76. 76.
    Langer, J.S.: An introduction to the kinetics of first-order phase transitions. In: Godreche, C. (ed.) Solids Far from Equilibrium, pp. 297–363. Cambridge University Press, Cambridge (1992)Google Scholar
  77. 77.
    Lin, T.S., Rogers, S., Tseluiko, D., Thiele, U.: Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder. Phys. Fluids 28, 082,102 (2016)CrossRefGoogle Scholar
  78. 78.
    Lloyd, D.J.B., Sandstede, B., Avitabile, D., Champneys, A.R.: Localized hexagon patterns of the planar Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 7, 1049–1100 (2008)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Lust, K.: Continuation and bifurcation analysis of periodic solutions of partial differential equations. Continuation Methods in Fluid Dynamics (Aussois, 1998). Notes on Numerical Fluid Mechanics, vol. 74, pp. 191–202. Vieweg, Braunschweig (2000)Google Scholar
  80. 80.
    Maier-Paape, S., Mischaikow, K., Wanner, T.: Structure of the attractor of the Cahn-Hilliard equation on a square. Int. J. Bifurc. Chaos 17, 1221–1263 (2007)MathSciNetCrossRefGoogle Scholar
  81. 81.
    Maier-Paape, S., Miller, U., Mischaikow, K., Wanner, T.: Rigorous numerics for the Cahn-Hilliard equation on the unit square. Rev. Mat. Complut. 21, 351–426 (2008)MathSciNetCrossRefGoogle Scholar
  82. 82.
    Makrides, E., Sandstede, B.: Predicting the bifurcation structure of localized snaking patterns. Phys. D 268, 59–78 (2014)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Marconi, U.M.B., Tarazona, P.: Dynamic density functional theory of fluids. J. Phys. Condens. Matter 12, A413–A418 (2000)Google Scholar
  84. 84.
    Mei, Z.: Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer, Berlin (2000)CrossRefGoogle Scholar
  85. 85.
    Menzel, A., Löwen, H.: Traveling and resting crystals in active systems. Phys. Rev. Lett. 110, 055,702 (2013)Google Scholar
  86. 86.
    Mitlin, V.S.: Dewetting of solid surface: analogy with spinodal decomposition. J. Colloid Interface Sci. 156, 491–497 (1993)CrossRefGoogle Scholar
  87. 87.
    Morales, M., Rojas, J., Torres, I., Rubio, E.: Modeling ternary mixtures by mean-field theory of polyelectrolytes: coupled Ginzburg-Landau and Swift-Hohenberg equations. Phys. A 391, 779–791 (2012)CrossRefGoogle Scholar
  88. 88.
    Münch, A.: Pinch-off transition in Marangoni-driven thin films. Phys. Rev. Lett. 91, 016,105 (2003)Google Scholar
  89. 89.
    Náraigh, L.Ó., Thiffeault, J.L.: Nonlinear dynamics of phase separation in thin films. Nonlinearity 23, 1559–1583 (2010)MathSciNetCrossRefGoogle Scholar
  90. 90.
    Net, M., Sánchez, J.: Continuation of bifurcations of periodic orbits for large-scale systems. SIAM J. Appl. Dyn. Syst. 14(2), 674–698 (2015)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors. Phys. D 16(2), 155–183 (1985)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Novick-Cohen, A.: The nonlinear Cahn-Hilliard equation: transition from spinodal decomposition to nucleation behavior. J. Stat. Phys. 38, 707–723 (1985)CrossRefGoogle Scholar
  93. 93.
    Novick-Cohen, A., Peletier, L.: Steady-states of the one-dimensional Cahn-Hilliard equation. Proc. R. Soc. Edinb. Sect. A-Math. 123, 1071–1098 (1993)MathSciNetCrossRefGoogle Scholar
  94. 94.
    Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)CrossRefGoogle Scholar
  95. 95.
    Oza, A., Heidenreich, S., Dunkel, J.: Generalized Swift-Hohenberg models for dense active suspensions. Eur. Phys. J. E 39, 97 (2016)CrossRefGoogle Scholar
  96. 96.
    Pismen, L.M., Pomeau, Y.: Disjoining potential and spreading of thin liquid layers in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E 62, 2480–2492 (2000)MathSciNetCrossRefGoogle Scholar
  97. 97.
    Pismen, L.M., Thiele, U.: Asymptotic theory for a moving droplet driven by a wettability gradient. Phys. Fluids 18, 042,104 (2006)CrossRefGoogle Scholar
  98. 98.
    Pomeau, Y., Zaleski, S.: The Kuramoto-Sivashinsky equation: a caricature of hydrodynamic turbulence? In: Frisch, U., Keller, J. B., Papanicolaou, G., Pironneau, O. (eds.) Macroscopic Modelling of Turbulent Flows (Nice, 1984). Lecture Notes in Physics, vol. 230, pp. 296–303. Springer, Berlin (1985)Google Scholar
  99. 99.
    Pototsky, A., Archer, A.J., Savel’ev, S.E., Thiele, U., Marchesoni, F.: Ratcheting of driven attracting colloidal particles: temporal density oscillations and current multiplicity. Phys. Rev. E 83, 061,401 (2011)Google Scholar
  100. 100.
    Pototsky, A., Thiele, U., Archer, A.: Coarsening modes of clusters of aggregating particles. Phys. Rev. E 89, 032,144 (2014)Google Scholar
  101. 101.
    Sakaguchi, H., Brand, H.R.: Stable localized solutions of arbitrary length for the quintic Swift-Hohenberg equation. Phys. D 97, 274–285 (1996)CrossRefGoogle Scholar
  102. 102.
    Salinger, A.: LOCA (2016). www.cs.sandia.gov/LOCA/. Accessed 25 Feb 18
  103. 103.
    Sánchez, J., Net, M.: Numerical continuation methods for large-scale dissipative dynamical systems. Eur. Phys. J. Spec. Top. 225, 2465–2486 (2016)CrossRefGoogle Scholar
  104. 104.
    Sánchez, J., Garcia, F., Net, M.: Computation of azimuthal waves and their stability in thermal convection in rotating spherical shells with application to the study of a double-Hopf bifurcation. Phys. Rev. E 033014 (2013)Google Scholar
  105. 105.
    Schelte, C., Javaloyes, J., Gurevich, S.V.: Dynamics of temporal localized states in passively mode-locked semiconductor lasers. Phys. Rev. A 97, 053820 (2018)Google Scholar
  106. 106.
    Schüler, D., Alonso, S., Torcini, A., Bär, M.: Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations. Chaos 24, 043,142 (2014)MathSciNetCrossRefGoogle Scholar
  107. 107.
    Seydel, R.: Practical Bifurcation and Stability Analysis, 3rd edn. Springer, Berlin (2010)CrossRefGoogle Scholar
  108. 108.
    Sharma, A., Jameel, A.: Stability of thin polar films on non-wettable substrates. J. Chem. Soc. Faraday Trans. 90, 625–627 (1994)CrossRefGoogle Scholar
  109. 109.
    Siero, E., Doelman, A., Eppinga, M.B., Rademacher, J.D.M., Rietkerk, M., Siteur, K.: Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes. Chaos 25(3) (2015)MathSciNetCrossRefGoogle Scholar
  110. 110.
    Sivashinsky, G.: Nonlinear analysis of hydrodynamic instability in laminar flames. I - derivation of basic equations. Acta Astronaut. 4, 1177–1206 (1977)MathSciNetCrossRefGoogle Scholar
  111. 111.
    Snoeijer, J.H., Le Grand-Piteira, N., Limat, L., Stone, H.A., Eggers, J.: Cornered drops and rivulets. Phys. Fluids 19, 042,104 (2007)CrossRefGoogle Scholar
  112. 112.
    Snoeijer, J.H., Ziegler, J., Andreotti, B., Fermigier, M., Eggers, J.: Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Phys. Rev. Lett. 100, 244,502 (2008)Google Scholar
  113. 113.
    Sonnet, A., Virga, E.: Dynamics of dissipative ordered fluids. Phys. Rev. E 64, 031,705 (2001)Google Scholar
  114. 114.
    Spratte, K., Chi, L.F., Riegler, H.: Physisorption instabilities during dynamic Langmuir wetting. Europhys. Lett. 25, 211–217 (1994)CrossRefGoogle Scholar
  115. 115.
    Stenhammar, J., Tiribocchi, A., Allen, R., Marenduzzo, D., Cates, M.: Continuum theory of phase separation kinetics for active Brownian particles. Phys. Rev. Lett. 111, 145,702 (2013)Google Scholar
  116. 116.
    Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at convective instability. Phys. Rev. A 15, 319–328 (1977)CrossRefGoogle Scholar
  117. 117.
    Thiele, U.: Open questions and promising new fields in dewetting. Eur. Phys. J. E 12, 409–416 (2003)CrossRefGoogle Scholar
  118. 118.
    Thiele, U.: Structure formation in thin liquid films. In: Kalliadasis, S., Thiele, U. (eds.) Thin Films of Soft Matter, pp. 25–93. Springer, Wien (2007)Google Scholar
  119. 119.
    Thiele, U.: Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. J. Phys. Condens. Matter 22, 084,019 (2010)Google Scholar
  120. 120.
    Thiele, U.: Patterned deposition at moving contact line. Adv. Colloid Interface Sci. 206, 399–413 (2014)CrossRefGoogle Scholar
  121. 121.
    Thiele, U., Velarde, M.G., Neuffer, K.: Dewetting: film rupture by nucleation in the spinodal regime. Phys. Rev. Lett. 87, 016,104 (2001)Google Scholar
  122. 122.
    Thiele, U., Brusch, L., Bestehorn, M., Bär, M.: Modelling thin-film dewetting on structured substrates and templates: bifurcation analysis and numerical simulations. Eur. Phys. J. E 11, 255–271 (2003)CrossRefGoogle Scholar
  123. 123.
    Thiele, U., Madruga, S., Frastia, L.: Decomposition driven interface evolution for layers of binary mixtures: I. Model derivation and stratified base states. Phys. Fluids 19, 122,106 (2007)CrossRefGoogle Scholar
  124. 124.
    Thiele, U., Archer, A.J., Robbins, M.J., Gomez, H., Knobloch, E.: Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity. Phys. Rev. E 87, 042,915 (2013)Google Scholar
  125. 125.
    Thiele, U., Archer, A., Pismen, L.: Gradient dynamics models for liquid films with soluble surfactant. Phys. Rev. Fluids 1, 083,903 (2016)Google Scholar
  126. 126.
    Toth, G., Tegze, G., Pusztai, T., Toth, G., Granasy, L.: Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2d and 3d. J. Phys. Condens. Matter 22, 364,101 (2010)Google Scholar
  127. 127.
    Tseluiko, D., Galvagno, M., Thiele, U.: Collapsed heteroclinic snaking near a heteroclinic chain in dragged meniscus problems. Eur. Phys. J. E 37, 33 (2014)CrossRefGoogle Scholar
  128. 128.
    Uecker, H.: Optimal harvesting and spatial patterns in a semi arid vegetation system. Nat. Resour. Model. 29(2), 229–258 (2016)MathSciNetCrossRefGoogle Scholar
  129. 129.
    Uecker, H.: User guide on Hopf bifurcation and time periodic orbits with pde2path (2017). Available at [131]Google Scholar
  130. 130.
    Uecker, H.: (2017), www.staff.uni-oldenburg.de/hannes.uecker/pde2path. Accessed 25 Feb 18
  131. 131.
    Uecker, H.: Hopf bifurcation and time periodic orbits with pde2path – algorithms and applications. Commun. Comput. Phys. (to appear) (2018)Google Scholar
  132. 132.
    Uecker, H.: Steady bifurcations of higher multiplicity in pde2path, preprint (2018)Google Scholar
  133. 133.
    Uecker, H., Wetzel, D.: Numerical results for snaking of patterns over patterns in some 2D Selkov-Schnakenberg reaction-diffusion systems. SIADS 13–1, 94–128 (2014)MathSciNetCrossRefGoogle Scholar
  134. 134.
    Uecker, H., Wetzel, D., Rademacher, J.: pde2path - a Matlab package for continuation and bifurcation in 2D elliptic systems. NMTMA 7, 58–106 (2014)MathSciNetzbMATHGoogle Scholar
  135. 135.
    van Saarloos, W.: Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection. Phys. Rev. A 37, 211–229 (1988)MathSciNetCrossRefGoogle Scholar
  136. 136.
    Wetzel, D.: Pattern analysis in a benthic bacteria-nutrient system. Math. Biosci. Eng. 13(2), 303–332 (2016)MathSciNetzbMATHGoogle Scholar
  137. 137.
    Wilczek, M., Tewes, W.B.H., Gurevich, S.V., Köpf, M.H., Chi, L., Thiele, U.: Modelling pattern formation in dip-coating experiments. Math. Model. Nat. Phenom. 10, 44–60 (2015)MathSciNetCrossRefGoogle Scholar
  138. 138.
    Wilczek, M., Tewes, W., Engelnkemper, S., Gurevich, S.V., Thiele, U.: Sliding drops - ensemble statistics from single drop bifurcations. Phys. Rev. Lett. 119, 204,501 (2017)Google Scholar
  139. 139.
    Wilczek, M., Zhu, J., Chi, L., Thiele, U., Gurevich, S.V.: Dip-coating with prestructured substrates: transfer of simple liquids and Langmuir-Blodgett monolayers. J. Phys. Condens. Matter 29, 014,002 (2017)Google Scholar
  140. 140.
    Wittkowski, R., Tiribocchi, A., Stenhammar, J., Allen, R., Marenduzzo, D., Cates, M.: Scalar phi(4) field theory for active-particle phase separation. Nat. Commun. 5, 4351 (2014)CrossRefGoogle Scholar
  141. 141.
    Yin, H., Sibley, D., Thiele, U., Archer, A.: Films, layers and droplets: the effect of near-wall fluid structure on spreading dynamics. Phys. Rev. E 95, 023,104 (2017)Google Scholar
  142. 142.
    Zaks, M., Podolny, A., Nepomnyashchy, A., Golovin, A.: Periodic stationary patterns governed by a convective Cahn-Hilliard equation. SIAM J. Appl. Math. 66, 700–720 (2006)MathSciNetCrossRefGoogle Scholar
  143. 143.
    Zelnik, Y., Uecker, H., Feudel, U., Meron, E.: Desertification by front propagation? J. Theor. Biol. 27–35 (2017)MathSciNetCrossRefGoogle Scholar
  144. 144.
    Zhelyazov, D., Han-Kwan, D., Rademacher, J.D.M.: Global stability and local bifurcations in a two-fluid model for tokamak plasma. SIAM J. Appl. Dyn. Syst. 14, 730–763 (2015)MathSciNetCrossRefGoogle Scholar
  145. 145.
    Ziegler, J., Snoeijer, J., Eggers, J.: Film transitions of receding contact lines. Eur. Phys. J. Spec. Top. 166, 177–180 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • S. Engelnkemper
    • 1
    Email author
  • S. V. Gurevich
    • 1
  • H. Uecker
    • 2
  • D. Wetzel
    • 2
  • U. Thiele
    • 1
  1. 1.University of MünsterMünsterGermany
  2. 2.University of OldenburgOldenburgGermany

Personalised recommendations