Skip to main content

Abstract

To address the problem of illicit substance detection at borders, we propose a complete method for explainable classification of materials. The classification is performed using imaprecise chemical data, which is quite rare in the literature. We follow a two-step workflow based on fuzzy logic induction. Firstly, a clustering approach is used to learn the suitable fuzzy terms of the various linguistic variables. Secondly, we induce rules for a justified classification using a fuzzy decision tree. Both methods are adaptations from classic ones to the case of imprecise data. At the end of the paper, results on simulated data are presented in the expectation of real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akiyama, T., Inokuchi, H.: Application of fuzzy decision tree to analyze the attitude of citizens for wellness city development. In: 2016 17th International Symposium on Advanced Intelligent Systems. IEEE, August 2016

    Google Scholar 

  2. Aupetit, M., Allano, L., Espagnon, I., Sannié, G.: Visual analytics to check marine containers in the eritr@c project. In: Proceedings of International Symposium on Visual Analytics Science and Technology, pp. 3–4 (2010)

    Google Scholar 

  3. Bounhas, M., Prade, H., Serrurier, M., Mellouli, K.: A possibilistic rule-based classifier. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012. CCIS, vol. 297, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31709-5_3

    Chapter  Google Scholar 

  4. Chang, R.L.P., Pavlidis, T.: Fuzzy decision tree algorithms. IEEE Trans. Syst. Man Cybern. 7(1), 28–35 (1977)

    Article  MathSciNet  Google Scholar 

  5. Coppi, R., D’Urso, P.: Fuzzy time arrays and dissimilarity measures for fuzzy time trajectories. In: Kiers, H.A.L., Rasson, J.P., Groenen, P.J.F., Schader, M. (eds.) Data Analysis, Classification, and Related Methods, pp. 273–278. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59789-3_44

    Chapter  MATH  Google Scholar 

  6. Duch, W.: Uncertainty of data, fuzzy membership functions, and multilayer perceptrons. IEEE Trans. Neural Netw. 16(1), 10–23 (2005)

    Article  Google Scholar 

  7. D’Urso, P., de Giovanni, L.: Robust clustering of imprecise data. Chemometr. Intell. Lab. Syst. 136, 58–80 (2014)

    Article  Google Scholar 

  8. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  Google Scholar 

  9. Gullo, F., Ponti, G., Tagarelli, A.: Clustering uncertain data via K-medoids. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 229–242. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87993-0_19

    Chapter  Google Scholar 

  10. Ishibuchi, H., Nakasima, T., Morisawa, T.: Voting in fuzzy rule-based systems for pattern classification problems. Fuzzy Sets Syst. 103, 223–238 (1999)

    Article  Google Scholar 

  11. Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Trans. Syst. Man Cybern. - Part B: Cybern. 28(1), 1–14 (1998)

    Article  Google Scholar 

  12. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Dodge, Y. (ed.) Statistical data analysis based on the \( L_{1} \) norm and related methods, pp. 405–416 (1987)

    Google Scholar 

  13. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets Syst. 138, 221–254 (2003)

    Article  MathSciNet  Google Scholar 

  14. Peng, Y., Flach, P.A.: Soft discretization to enhance the continuous decision tree induction. Integrating Aspects of Data Mining, Decision Support and Meta-Learning (2001)

    Google Scholar 

  15. Tsang, S., Kao, B., Yip, K., Ho, W., Lee, S.: Decision trees for uncertain data. IEEE Trans. Knowl. Data Eng. (1), 64–78 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This research has been funded by the project H2020 C-BORD. We warmly thank S. Moretto, C. Fontana, F. Pino, A. Sardet, C. Carasco, B. Pérot and V. Picaud for their contributions before our work, for their availability and their expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Grivet Sébert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grivet Sébert, A., Poli, JP. (2018). Fuzzy Rule Learning for Material Classification from Imprecise Data. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-91473-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91473-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91472-5

  • Online ISBN: 978-3-319-91473-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics