Skip to main content

Deep Sparse Informative Transfer SoftMax for Cross-Domain Image Classification

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10828))

Included in the following conference series:

  • 3645 Accesses

Abstract

In many real applications, it is often encountered that the models trained on source domain cannot fit the related target images very well, due to the variants and changes of the imaging background, lighting of environment, viewpoints and so forth. Therefore cross-domain image classification becomes a very interesting research problem. Lots of research efforts have been conducted on this problem, where many of them focus on exploring the cross-domain image features. Recently transfer learning based methods become the main stream. In this paper, we present a novel transfer SoftMax model called Sparse Informative Transfer SoftMax (SITS) to deal with the problem of cross-domain image classification. SITS is a flexible classification framework. Specifically, the principle eigenvectors of the target domain feature space are introduced into our objective function, hence the informative features of the target domain are exploited in the process of the model training. The sparse regularization for feature selection and the SoftMax classification are also employed in our framework. On this basis, we developed Deep SITS network to efficiently learn informative transfer model and enhance the transferable ability of deep neural network. Extensive experiments are conducted on several commonly used benchmarks. The experimental results show that comparing with the state-of-the-art methods, our method achieves the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: From generic to specific deep representations for visual recognition. CoRR abs/1406.5774 (2014)

    Google Scholar 

  2. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.-P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14), e49–e57 (2006)

    Article  Google Scholar 

  3. Bruzzone, L., Marconcini, M.: Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 770–787 (2010)

    Article  Google Scholar 

  4. Chen, M., Weinberger, K.Q., Blitzer, J: Co-training for domain adaptation. In: Advances in Neural Information Processing Systems, pp. 2456–2464 (2011)

    Google Scholar 

  5. Ding, Z., Shao, M., Fu, Y.: Deep low-rank coding for transfer learning. In: IJCAI, pp. 3453–3459 (2015)

    Google Scholar 

  6. Lixin, D., Tsang, I.W., Xu, D.: Domain transfer multiple kernel learning. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 465–479 (2012)

    Article  Google Scholar 

  7. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495 (2014)

  8. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2066–2073. IEEE (2012)

    Google Scholar 

  10. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

    Google Scholar 

  11. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML, pp. 97–105 (2015)

    Google Scholar 

  15. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2200–2207 (2013)

    Google Scholar 

  16. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410–1417 (2014)

    Google Scholar 

  17. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

    Article  Google Scholar 

  18. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  19. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

    Google Scholar 

  20. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4068–4076 (2015)

    Google Scholar 

  21. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: ICLR Workshop (2017)

    Google Scholar 

  22. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  23. Wang, H., Wang, W., Zhang, C., Xu, F.: Cross-domain metric learning based on information theory. In: AAAI, pp. 2099–2105 (2014)

    Google Scholar 

  24. Wang, W., Wang, H., Zhang, C., Xu, F.: Transfer feature representation via multiple kernel learning. In: AAAI, pp. 3073–3079 (2015)

    Google Scholar 

  25. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised embedding. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 639–655. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_34

    Chapter  Google Scholar 

  26. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  27. Zhu, G., Yang, H., Lin, L., Zhou, G., Zhou, X.: An informative logistic regression for cross-domain image classification. In: Nalpantidis, L., Krüger, V., Eklundh, J.-O., Gasteratos, A. (eds.) ICVS 2015. LNCS, vol. 9163, pp. 147–156. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20904-3_14

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by the National High Technology Research and Development Program (863 Program) of China (2015AA050203), NSFC grant no. 61370157, NSFC grant no. 61373106, NSFC grant no. 61572135 and State Grid Shanghai Company Project No. 52094016001Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, H. et al. (2018). Deep Sparse Informative Transfer SoftMax for Cross-Domain Image Classification. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10828. Springer, Cham. https://doi.org/10.1007/978-3-319-91458-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91458-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91457-2

  • Online ISBN: 978-3-319-91458-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics