Skip to main content

Novel Approaches to Accelerating the Convergence Rate of Markov Decision Process for Search Result Diversification

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10828))

Included in the following conference series:

Abstract

Recently, some studies have utilized the Markov Decision Process for diversifying (MDP-DIV) the search results in information retrieval. Though promising performances can be delivered, MDP-DIV suffers from a very slow convergence, which hinders its usability in real applications. In this paper, we aim to promote the performance of MDP-DIV by speeding up the convergence rate without much accuracy sacrifice. The slow convergence is incurred by two main reasons: the large action space and data scarcity. On the one hand, the sequential decision making at each position needs to evaluate the query-document relevance for all the candidate set, which results in a huge searching space for MDP; on the other hand, due to the data scarcity, the agent has to proceed more “trial and error” interactions with the environment. To tackle this problem, we propose MDP-DIV-kNN and MDP-DIV-NTN methods. The MDP-DIV-kNN method adopts a k nearest neighbor strategy, i.e., discarding the k nearest neighbors of the recently-selected action (document), to reduce the diversification searching space. The MDP-DIV-NTN employs a pre-trained diversification neural tensor network (NTN-DIV) as the evaluation model, and combines the results with MDP to produce the final ranking solution. The experiment results demonstrate that the two proposed methods indeed accelerate the convergence rate of the MDP-DIV, which is 3x faster, while the accuracies produced barely degrade, or even are better.

The work is done when Feng Liu works as an intern in Noah’s Ark Lab, Huawei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the ease of explaination, we suppose each query is associated with the same number of documents.

  2. 2.

    In order to learn end-to-end, we use the embedding features instead of handcrafted relevance features.

  3. 3.

    All the queries and documents are embedded with doc2vec [8] embedding model.

  4. 4.

    https://github.com/sweetalyssum/DiverseNTN.

  5. 5.

    The datasets and source code are available at https://github.com/sweetalyssum/RL4SRD.

  6. 6.

    http://lemurproject.org/clueweb09/.

  7. 7.

    http://trec.nist.gov/data/web/12/ndeval.c.

  8. 8.

    The authors does not provide the split results, therefore we re-split the queries.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: SIGIR 1998, pp. 335–336. ACM (1998)

    Google Scholar 

  3. Chapelle, O., Ji, S., Liao, C., Velipasaoglu, E., Lai, L., Wu, S.L.: Intent-based diversification of web search results: metrics and algorithms. Inf. Retr. 14(6), 572–592 (2011)

    Article  Google Scholar 

  4. Clarke, C.L., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: SIGIR 2008, pp. 659–666. ACM (2008)

    Google Scholar 

  5. Dang, V., Croft, W.B.: Diversity by proportionality: an election-based approach to search result diversification. In: SIGIR 2012, pp. 65–74. ACM (2012)

    Google Scholar 

  6. Guo, S., Sanner, S.: Probabilistic latent maximal marginal relevance. In: SIGIR 2010, pp. 833–834. ACM (2010)

    Google Scholar 

  7. He, J., Hollink, V., de Vries, A.: Combining implicit and explicit topic representations for result diversification. In: SIGIR 2012, pp. 851–860. ACM (2012)

    Google Scholar 

  8. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: ICML 2014, vol. 32, pp. 1188–1196. PMLR, Beijing, 22–24 June 2014

    Google Scholar 

  9. Lu, Z., Yang, Q.: Partially observable Markov decision process for recommender systems. arXiv preprint arXiv:1608.07793 (2016)

  10. Luo, J., Zhang, S., Yang, H.: Win-win search: dual-agent stochastic game in session search. In: SIGIR 2014, pp. 587–596. ACM (2014)

    Google Scholar 

  11. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Hoboken (2014)

    Google Scholar 

  12. Radlinski, F., Kleinberg, R., Joachims, T.: Learning diverse rankings with multi-armed bandits. In: ICML 2008, pp. 784–791. ACM (2008)

    Google Scholar 

  13. Rafiei, D., Bharat, K., Shukla, A.: Diversifying web search results. In: WWW 2010, pp. 781–790. ACM (2010)

    Google Scholar 

  14. Raman, K., Shivaswamy, P., Joachims, T.: Online learning to diversify from implicit feedback. In: SIGKDD 2012, pp. 705–713. ACM (2012)

    Google Scholar 

  15. Santos, R.L., Macdonald, C., Ounis, I.: Exploiting query reformulations for web search result diversification. In: WWW 2010, pp. 881–890. ACM (2010)

    Google Scholar 

  16. Santos, R.L.T., Peng, J., Macdonald, C., Ounis, I.: Explicit search result diversification through sub-queries. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 87–99. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12275-0_11

    Chapter  Google Scholar 

  17. Shani, G., Heckerman, D., Brafman, R.I.: An MDP-based recommender system. J. Mach. Learn. Res. 6(Sep), 1265–1295 (2005)

    Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Wang, J., Yu, L., Zhang, W., Gong, Y., Xu, Y., Wang, B., Zhang, P., Zhang, D.: IRGAN: a minimax game for unifying generative and discriminative information retrieval models. In: SIGIR 2017, pp. 515–524. ACM, New York (2017)

    Google Scholar 

  20. Wei, Z., Xu, J., Lan, Y., Guo, J., Cheng, X.: Reinforcement learning to rank with Markov decision process. In: SIGIR 2017, pp. 945–948. ACM, New York (2017)

    Google Scholar 

  21. Xia, L., Xu, J., Lan, Y., Guo, J., Cheng, X.: Learning maximal marginal relevance model via directly optimizing diversity evaluation measures. In: SIGIR 2015, pp. 113–122. ACM (2015)

    Google Scholar 

  22. Xia, L., Xu, J., Lan, Y., Guo, J., Cheng, X.: Modeling document novelty with neural tensor network for search result diversification. In: SIGIR 2016, pp. 395–404. ACM (2016)

    Google Scholar 

  23. Xia, L., Xu, J., Lan, Y., Guo, J., Zeng, W., Cheng, X.: Adapting Markov decision process for search result diversification. In: SIGIR 2017, pp. 535–544. ACM, New York (2017)

    Google Scholar 

  24. Xu, J., Xia, L., Lan, Y., Guo, J., Cheng, X.: Directly optimize diversity evaluation measures: a new approach to search result diversification. ACM Trans. Intell. Syst. Technol. (TIST) 8(3), 41 (2017)

    Google Scholar 

  25. Yu, H.T., Jatowt, A., Blanco, R., Joho, H., Jose, J., Chen, L., Yuan, F.: A concise integer linear programming formulation for implicit search result diversification. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 191–200. ACM (2017)

    Google Scholar 

  26. Zhai, C.X., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: SIGIR 2003, pp. 10–17. ACM (2003)

    Google Scholar 

  27. Zhang, S., Luo, J., Yang, H.: A POMDP model for content-free document re-ranking. In: SIGIR 2014, pp. 1139–1142. ACM (2014)

    Google Scholar 

  28. Zhu, Y., Lan, Y., Guo, J., Cheng, X., Niu, S.: Learning for search result diversification. In: SIGIR 2014, pp. 293–302. ACM (2014)

    Google Scholar 

Download references

Acknowledgement

This research was supported in part by Shenzhen Science and Technology Program under Grant No. JCYJ20160330163900579, and NSFC under Grant Nos. 61572158 and 61602132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunming Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F., Tang, R., Li, X., Ye, Y., Guo, H., He, X. (2018). Novel Approaches to Accelerating the Convergence Rate of Markov Decision Process for Search Result Diversification. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10828. Springer, Cham. https://doi.org/10.1007/978-3-319-91458-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91458-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91457-2

  • Online ISBN: 978-3-319-91458-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics