Skip to main content

Personalized Prescription for Comorbidity

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10828))

Included in the following conference series:

Abstract

Personalized medicine (PM) aiming at tailoring medical treatment to individual patient is critical in guiding precision prescription. An important challenge for PM is comorbidity due to the complex interrelation of diseases, medications and individual characteristics of the patient. To address this, we study the problem of PM for comorbidity and propose a neural network framework Deep Personalized Prescription for Comorbidity (PPC). PPC exploits multi-source information from massive electronic medical records (EMRs), such as demographic information and laboratory indicators, to support personalized prescription. Patient-level, disease-level and drug-level representations are simultaneously learned and fused with a trilinear method to achieve personalized prescription for comorbidity. Experiments on a publicly real world EMRs dataset demonstrate PPC outperforms state-of-the-art works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://bioportal.bioontology.org/ontologies/ICD9CM.

  2. 2.

    We have also examined LSTM and other activation functions to learn to represent diagnosis, but they have less efficiency and worse performance.

  3. 3.

    We have examined both l1-norm and l2-norm, and find their performance are similar.

  4. 4.

    http://www.fda.gov/Drugs/DevelopmentApprovalProcess/.

  5. 5.

    http://www.whocc.no/atc/structure and principles/.

  6. 6.

    https://www.nlm.nih.gov/research/umls/rxnorm/.

References

  1. PMC2017: The personalized medicine opportunity, challenges, and the future (2017). http://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/The-Personalized-Medicine-Report1.pdf

  2. Spear, B., Heath-Chiozzi, M., Huff, J.: Clinical application of pharmacogenetics. Trends Mol. Med. 7(5), 201–204 (2001)

    Article  Google Scholar 

  3. Berwick, D.M., Finkelstein, J.A.: Preparing medical students for the continual improvement of health and health care: Abraham flexner and the new public interest. Acad. Med. S56–S65 (2010)

    Google Scholar 

  4. Munoz, E., Rosner, F., Friedman, R., Sterman, H., Goldstein, J., Wise, L.: Financial risk, hospital cost, and complications and comorbidities in medical non-complications and comorbidity-stratified diagnosis-related groups. Am. J. Med. 84(5), 933–939 (1988)

    Article  Google Scholar 

  5. Jakovljević, M., Reiner, Ž., Miličić, D., Crnčević, Ž.: Comorbidity, multimorbidity and personalized psychosomatic medicine: epigenetics rolling on the horizon. Psychiatr. Danub. 22(2), 184–189 (2010)

    Google Scholar 

  6. Taylor, A.W., Price, K., Gill, T.K., Adams, R., Pilkington, R., Carrangis, N., Shi, Z., Wilson, D.: Multimorbidity-not just an older person’s issue. Results from an Australian biomedical study. BMC Public Health 10(1), 718 (2010)

    Article  Google Scholar 

  7. Bonavita, V., De Simone, R.: Towards a definition of comorbidity in the light of clinical complexity. Neurol. Sci. 29(1), 99–102 (2008)

    Article  Google Scholar 

  8. Valderas, J.M., Starfield, B., Sibbald, B., Salisbury, C., Roland, M.: Defining comorbidity: implications for understanding health and health services. Ann. Family Med. 7(4), 357–363 (2009)

    Article  Google Scholar 

  9. Sun, L., Liu, C., Guo, C., Xiong, H., Xie, Y.: Data-driven automatic treatment regimen development and recommendation. In: KDD, pp. 1865–1874 (2016)

    Google Scholar 

  10. Hu, J., Perer, A., Wang, F.: Data driven analytics for personalized healthcare. In: Weaver, C.A., Ball, M.J., Kim, G.R., Kiel, J.M. (eds.) Healthcare Information Management Systems. HI, pp. 529–554. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-20765-0_31

    Chapter  Google Scholar 

  11. Lusted, L.B.: Introduction to medical decision making. Am. J. Phys. Med. Rehabil. 49(5), 322 (1970)

    Google Scholar 

  12. Cheerla, N., Gevaert, O.: Microrna based pan-cancer diagnosis and treatment recommendation. BMC Bioinform. 18(1), 32 (2017)

    Article  Google Scholar 

  13. Bajor, J.M., Lasko, T.A.: Predicting medications from diagnostic codes with recurrent neural networks. In: ICLR (2017)

    Google Scholar 

  14. Zhang, Y., Chen, R., Tang, J., Stewart, W.F., Sun, J.: Leap: learning to prescribe effective and safe treatment combinations for multimorbidity. In: KDD, pp. 1315–1324 (2017)

    Google Scholar 

  15. Jakovljevi, M., Ostoji, L.: Comorbidity and multimorbidity in medicine today: challenges and opportunities for bringing separated branches of medicine closer to each other. Psychiatr Danub 25, 18–28 (2013)

    Google Scholar 

  16. Hart, A., Wyatt, J.: Connectionist models in medicine: an investigation of their potential. In: Hunter, J., Cookson, J., Wyatt, J. (eds.) AIME 89, pp. 115–124. Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-93437-7_15

    Chapter  Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzell, R.: Learning to diagnose with LSTM recurrent neural networks. In: ICLR (2016)

    Google Scholar 

  19. Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  20. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: predicting clinical events via recurrent neural networks. In: Machine Learning for Healthcare Conference, pp. 301–318 (2016)

    Google Scholar 

  21. Zhang, P., Wang, F., Hu, J., Sorrentino, R.: Towards personalized medicine: leveraging patient similarity and drug similarity analytics. In: AMIA Joint Summits on Translational Science Proceedings, p. 132 (2014)

    Google Scholar 

  22. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  23. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.: Show, attend and tell: neural image caption generation with visual attention. In: ICML, pp. 2048–2057 (2015)

    Google Scholar 

  24. Yang, L., Ai, Q., Guo, J., Croft, W.B.: aNMM: ranking short answer texts with attention-based neural matching model. In: CIKM, pp. 287–296 (2016)

    Google Scholar 

  25. Zhang, W., Wang, W., Wang, J., Zha, H.: User-guided hierarchical attention network for multi-modal social image popularity prediction. In: WWW (2018)

    Google Scholar 

  26. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: Retain: an interpretable predictive model for healthcare using reverse time attention mechanism. In: NIPS, pp. 3504–3512 (2016)

    Google Scholar 

  27. Rumelhart, D.E., Hinton, G.E., McClelland, J.L., et al.: A general framework for parallel distributed processing. Parallel Distrib. Process.: Explor. Microstruct. Cogn. 1, 45–76 (1986)

    Google Scholar 

  28. Riccardo, M., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)

    Article  Google Scholar 

  29. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: GRAM: graph-based attention model for healthcare representation learning. In: KDD, pp. 787–795 (2017)

    Google Scholar 

  30. Johnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 EP (2016)

    Article  Google Scholar 

  31. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. TKDE 26(8), 1819–1837 (2014)

    Google Scholar 

  32. Zhang, W., Wang, L., Yan, J., Wang, X., Zha, H.: Deep extreme multi-label learning. arXiv preprint arXiv:1704.03718 (2017)

  33. Maaten, L.V.D., Hinton, G.: Viualizing data using T-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000904, NSFC (61702190), NSFC-Zhejiang (U1609220), Shanghai Sailing Program (17YF1404500) and SHMEC (16CG24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Zhang, W., He, X., Zha, H. (2018). Personalized Prescription for Comorbidity. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10828. Springer, Cham. https://doi.org/10.1007/978-3-319-91458-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91458-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91457-2

  • Online ISBN: 978-3-319-91458-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics