BASSI: Balance and Status Combined Signed Network Embedding

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10827)

Abstract

Signed social networks have both positive and negative links which convey rich information such as trust or distrust, like or dislike. However, existing network embedding methods mostly focus on unsigned networks and ignore the negative interactions between users. In this paper, we investigate the problem of learning representations for signed networks and present a novel deep network structure to incorporate both the balance and status theory in signed networks. With the proposed framework, we can simultaneously learn the node embedding encoding the status of a node and the edge embedding denoting the sign of an edge. Furthermore, the learnt node and edge embeddings can be directly applied to the sign prediction and node ranking tasks. Experiments on real-world social networks demonstrate that our model significantly outperforms the state-of-the-art baselines.

Keywords

Signed network embedding Balance theory Status theory 

Notes

Acknowledgments

The work described in this paper has been supported in part by the NSFC projects (61572376, 91646206), and the 111 project (B07037).

References

  1. 1.
    Bottou, L.: Stochastic gradient learning in neural networks. Proc. Neuro-Nımes 91(8) (1991)Google Scholar
  2. 2.
    Brin, S., Page, L.: Reprint of: the anatomy of a large-scale hypertextual web search engine. Comput. Netw. 56(18), 3825–3833 (2012)CrossRefGoogle Scholar
  3. 3.
    Chiang, K.Y., Natarajan, N., Tewari, A.: Exploiting longer cycles for link prediction in signed networks. In: Proceedings of CIKM, pp. 1157–1162 (2011)Google Scholar
  4. 4.
    Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of SIGKDD, pp. 855–864 (2016)Google Scholar
  5. 5.
    Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Proceedings of WWW, pp. 403–412. ACM (2004)Google Scholar
  6. 6.
    Heider, F.: Attitudes and cognitive organization. J. Psychol. 21(1), 107–112 (1946)CrossRefGoogle Scholar
  7. 7.
    de Kerchove, C., Van Dooren, P.: The PageTrust algorithm: how to rank web pages when negative links are allowed? In: Proceedings of SDM, pp. 346–352. SIAM (2008)CrossRefGoogle Scholar
  8. 8.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. JACM 46(5), 604–632 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of WWW, pp. 641–650. ACM (2010)Google Scholar
  10. 10.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of SIGCHI, pp. 1361–1370. ACM (2010)Google Scholar
  11. 11.
    Perozzi, B., Al-Rfou, R., Skiena., S.: Deepwalk: online learning of social representations. In: Proceedings of SIGKDD, pp. 701–710 (2014)Google Scholar
  12. 12.
    Shahriari, M., Jalili, M.: Ranking nodes in signed social networks. SNAM 4(1), 172 (2014)Google Scholar
  13. 13.
    Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of WWW, pp. 1067–1077 (2015)Google Scholar
  14. 14.
    Tang, J., Chang, S., Aggarwal, C., Liu, H.: Negative link prediction in social media. In: Proceedings of ICDM, pp. 87–96. ACM (2015)Google Scholar
  15. 15.
    Tang, J., Chang, Y., Aggarwal, C., Liu, H.: A survey of signed network mining in social media. ACM Comput. Surv. (CSUR) 49(3), 42 (2016)CrossRefGoogle Scholar
  16. 16.
    Traag, V.A., Nesterov, Y.E., Van Dooren, P.: Exponential ranking: taking into account negative links. In: Bolc, L., Makowski, M., Wierzbicki, A. (eds.) SocInfo 2010. LNCS, vol. 6430, pp. 192–202. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16567-2_14CrossRefGoogle Scholar
  17. 17.
    Wang, S., Aggarwal, C., Tang, J., Liu, H.: Attributed signed network embedding. In: Proceedings of CIKM, pp. 137–146. ACM (2017)Google Scholar
  18. 18.
    Wang, S., Tang, J., Aggarwal, C., Chang, Y., Liu, H.: Signed network embedding in social media. In: Proceedings of SDM, pp. 327–335. SIAM (2017)CrossRefGoogle Scholar
  19. 19.
    Wu, Z., Aggarwal, C.C., Sun, J.: The troll-trust model for ranking in signed networks. In: Proceedings of ICDM, pp. 447–456. ACM (2016)Google Scholar
  20. 20.
    Zolfaghar, K., Aghaie, A.: Mining trust and distrust relationships in social web applications. In: Proceedings of ICCP, pp. 73–80. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer ScienceWuhan UniversityWuhanChina
  2. 2.School of Information ManagementWuhan UniversityWuhanChina

Personalised recommendations