Multi-metric Graph Query Performance Prediction

  • Keyvan Sasani
  • Mohammad Hossein Namaki
  • Yinghui Wu
  • Assefaw H. Gebremedhin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10827)

Abstract

We propose a general framework for predicting graph query performance with respect to three performance metrics: execution time, query answer quality, and memory consumption. The learning framework generates and makes use of informative statistics from data and query structure and employs a multi-label regression model to predict the multi-metric query performance. We apply the framework to study two common graph query classes—reachability and graph pattern matching; the two classes differ significantly in their query complexity. For both query classes, we develop suitable performance models and learning algorithms to predict the performance. We demonstrate the efficacy of our framework via experiments on real-world information and social networks. Furthermore, by leveraging the framework, we propose a novel workload optimization algorithm and show that it improves the efficiency of workload management by 54% on average.

Notes

Acknowledgments

Sasani and Gebremedhin are supported in part by NSF CAREER award IIS-1553528. Namaki and Wu are supported in part by NSF IIS-1633629 and Huawei Innovation Research Program (HIRP).

References

  1. 1.
    Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based query performance modeling and prediction. In: ICDE, pp. 390–401 (2012)Google Scholar
  2. 2.
    Arias, M., Fernández, J.D., Martínez-Prieto, M.A., de la Fuente, P.: An empirical study of real-world SPARQL queries. arXiv preprint arXiv:1103.5043 (2011)
  3. 3.
    Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: KDD, pp. 785–794 (2016)Google Scholar
  4. 4.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph reachability and pattern queries. In: ICDE, pp. 39–50 (2011)Google Scholar
  6. 6.
    Guo, Q., White, R.W., Dumais, S.T., Wang, J., Anderson, B.: Predicting query performance using query, result, and user interaction features. In: RIAO (2010)Google Scholar
  7. 7.
    Hasan, R.: Predicting SPARQL query performance and explaining linked data. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 795–805. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07443-6_53CrossRefGoogle Scholar
  8. 8.
    Hasan, R., Gandon, F.: A machine learning approach to SPARQL query performance prediction. In: WI-IAT (2014)Google Scholar
  9. 9.
    Hauff, C., Hiemstra, D., de Jong, F.: A survey of pre-retrieval query performance predictors. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 1419–1420. ACM (2008)Google Scholar
  10. 10.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. CSUR 40, 11 (2008)CrossRefGoogle Scholar
  11. 11.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: VLDB, pp. 275–286 (2002)CrossRefGoogle Scholar
  12. 12.
    Lu, J., Lin, C., Wang, W., Li, C., Wang, H.: String similarity measures and joins with synonyms. In: SIGMOD (2013)Google Scholar
  13. 13.
    Lu, X., Bressan, S.: Sampling connected induced subgraphs uniformly at random. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 195–212. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31235-9_13CrossRefGoogle Scholar
  14. 14.
    Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Capturing topology in graph pattern matching. VLDB 5, 310–321 (2011)MATHGoogle Scholar
  15. 15.
    Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL benchmark – performance assessment with real queries on real data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_29CrossRefGoogle Scholar
  16. 16.
    Namaki, M.H., Lin, P., Wu, Y.: Event pattern discovery by keywords in graph streams. In: IEEE Big Data (2017)Google Scholar
  17. 17.
    Namaki, M.H., Chowdhury, R.R., Islam, M.R., Doppa, J.R., Wu, Y.: Learning to speed up query planning in graph databases. In: ICAPS (2017)Google Scholar
  18. 18.
    Namaki, M.H., Sasani, K., Wu, Y., Ge, T.: BEAMS: bounded event detection in graph streams. In: ICDE, pp. 1387–1388 (2017)Google Scholar
  19. 19.
    Namaki, M.H., Sasani, K., Wu, Y., Gebremedhin, A.H.: Performance prediction for graph queries. In: NDA (2017)Google Scholar
  20. 20.
    Namaki, M.H., Wu, Y., Song, Q., Lin, P., Ge, T.: Discovering graph temporal association rules. In: CIKM, pp. 1697–1706 (2017)Google Scholar
  21. 21.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. TODS 30, 41–82 (2005)CrossRefGoogle Scholar
  22. 22.
    Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., Naughton, J.F.: Predicting query execution time: Are optimizer cost models really unusable? In: ICDE, pp. 1081–1092 (2013)Google Scholar
  23. 23.
    Xu, Z., Hogan, C., Bauer, R.: Greedy is not enough: an efficient batch mode active learning algorithm. In: ICDMW, pp. 326–331 (2009)Google Scholar
  24. 24.
    Yang, S., Han, F., Wu, Y., Yan, X.: Fast top-k search in knowledge graphs. In: ICDE (2016)Google Scholar
  25. 25.
    Yang, S., Wu, Y., Sun, H., Yan, X.: Schemaless and structureless graph querying. VLDB 7, 565–576 (2014)Google Scholar
  26. 26.
    Zhang, W.E., Sheng, Q.Z., Taylor, K., Qin, Y., Yao, L.: Learning-based SPARQL query performance prediction. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 313–327. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48740-3_23CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Keyvan Sasani
    • 1
  • Mohammad Hossein Namaki
    • 1
  • Yinghui Wu
    • 1
  • Assefaw H. Gebremedhin
    • 1
  1. 1.School of EECSWashington State UniversityPullmanUSA

Personalised recommendations