Skip to main content

Finding All Nearest Neighbors with a Single Graph Traversal

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10827))

Included in the following conference series:

Abstract

Finding the nearest neighbor is a key operation in data analysis and mining. An important variant of nearest neighbor query is the all nearest neighbor (ANN) query, which reports all nearest neighbors for a given set of query objects. Existing studies on ANN queries have focused on Euclidean space. Given the widespread occurrence of spatial networks in urban environments, we study the ANN query in spatial network settings. An example of an ANN query on spatial networks is finding the nearest car parks for all cars currently on the road. We propose VIVET, an index-based algorithm to efficiently process ANN queries. VIVET performs a single traversal on a spatial network to precompute the nearest data object for every vertex in the network, which enables us to answer an ANN query through a simple lookup on the precomputed nearest neighbors. We analyze the cost of the proposed algorithm both theoretically and empirically. Our results show that the algorithm is highly efficient and scalable. It outperforms adapted state-of-the-art nearest neighbor algorithms in both precomputation and query processing costs by more than one order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Safar, M., Ibrahimi, D., Taniar, D.: Voronoi-based reverse nearest neighbor query processing on spatial networks. Multimed. Syst. 15(5), 295–308 (2009)

    Article  Google Scholar 

  2. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neighbor monitoring in road networks. In: VLDB, pp. 43–54 (2006)

    Google Scholar 

  3. Böhm, C., Krebs, F.: The k-nearest neighbour join: turbo charging the KDD process. Knowl. Inf. Syst. 6(6), 728–749 (2004)

    Article  Google Scholar 

  4. https://techcrunch.com/2016/07/18/uber-has-completed-2-billion-rides/

  5. Weinberger, R.R., Karlin-Resnick, J.: Parking in mixed-use US districts: oversupplied no matter how you slice the pie. Transp. Res. Rec.: J. Transp. Res. Board (2537), 177–184 (2015)

    Google Scholar 

  6. Chen, Y., Patel, J.M.: Efficient evaluation of all-nearest-neighbor queries. In: ICDE, pp. 1056–1065 (2007)

    Google Scholar 

  7. Xia, C., Lu, H., Ooi, B.C., Hu, J.: GORDER: an efficient method for KNN join processing. In: VLDB, pp. 756–767 (2004)

    Google Scholar 

  8. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in spatial databases. In: SSDBM, pp. 297–306 (2004)

    Google Scholar 

  9. Yu, C., Cui, B., Wang, S., Su, J.: Efficient index-based KNN join processing for high-dimensional data. Inf. Softw. Technol. 49(4), 332–344 (2007)

    Article  Google Scholar 

  10. Emrich, T., Graf, F., Kriegel, H.-P., Schubert, M., Thoma, M.: Optimizing all-nearest-neighbor queries with trigonometric pruning. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 501–518. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13818-8_35

    Chapter  Google Scholar 

  11. Chen, H.L., Chang, Y.I.: All-nearest-neighbors finding based on the Hilbert curve. Expert Syst. Appl. 38(6), 7462–7475 (2011)

    Article  Google Scholar 

  12. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  13. Zhong, R., Li, G., Tan, K.L., Zhou, L.: G-tree: an efficient index for KNN search on road networks. In: CIKM, pp. 39–48 (2013)

    Google Scholar 

  14. Akiba, T., Iwata, Y., Kawarabayashi, K.I., Kawata, Y.: Fast shortest-path distance queries on road networks by pruned highway labeling. In: ALENEX, pp. 147–154 (2014)

    Google Scholar 

  15. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  16. Eklund, P.W., Kirkby, S., Pollitt, S.: A dynamic multi-source Dijkstra’s algorithm for vehicle routing. In: ANZIIS, pp. 329–333 (1996)

    Google Scholar 

  17. Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) Pervasive 2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005). https://doi.org/10.1007/11428572_10

    Chapter  Google Scholar 

  18. Abeywickrama, T., Cheema, M.A., Taniar, D.: K-nearest neighbors on road networks: a journey in experimentation and in-memory implementation. PVLDB 9(6), 492–503 (2016)

    Google Scholar 

  19. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB, pp. 802–813 (2003)

    Chapter  Google Scholar 

  20. http://nectar.org.au/research-cloud/

  21. http://www.dis.uniroma1.it/challenge9/

  22. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network databases. In: VLDB, pp. 840–851 (2004)

    Google Scholar 

  23. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: SIGMOD, pp. 43–54. ACM (2008)

    Google Scholar 

  24. Lee, K.C., Lee, W.C., Zheng, B., Tian, Y.: ROAD: a new spatial object search framework for road networks. TKDE 24(3), 547–560 (2012)

    Google Scholar 

  25. Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: FOCS, pp. 226–232 (1983)

    Google Scholar 

  26. Vaidya, P.M.: An O(n log n) algorithm for the all-nearest-neighbors problem. Discret. Comput. Geom. 4(1), 101–115 (1989)

    Article  Google Scholar 

  27. Sankaranarayanan, J., Samet, H., Varshney, A.: A fast all nearest neighbor algorithm for applications involving large point-clouds. Comput. Graph. 31(2), 157–174 (2007)

    Article  Google Scholar 

  28. Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.: Indexing the distance: an efficient method to KNN processing. In: VLDB, vol. 1, pp. 421–430 (2001)

    Google Scholar 

Download references

Acknowledgment

This work is supported in part by Australian Research Council (ARC) Discovery Project DP180103332.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Qi, J., Borovica-Gajic, R., Kulik, L. (2018). Finding All Nearest Neighbors with a Single Graph Traversal. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10827. Springer, Cham. https://doi.org/10.1007/978-3-319-91452-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91452-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91451-0

  • Online ISBN: 978-3-319-91452-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics