Skip to main content

Low-Rank and Sparse Cross-Domain Recommendation Algorithm

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10827))

Included in the following conference series:

Abstract

In this paper, we propose a novel Cross-Domain Collaborative Filtering (CDCF) algorithm termed Low-rank and Sparse Cross-Domain (LSCD) recommendation algorithm. Different from most of the CDCF algorithms which tri-factorize the rating matrix of each domain into three low dimensional matrices, LSCD extracts a user and an item latent feature matrix for each domain respectively. Besides, in order to improve the performance of recommendations among correlated domains by transferring knowledge and uncorrelated domains by differentiating features in different domains, the features of users are separated into shared and domain-specific parts adaptively. Specifically, a low-rank matrix is used to capture the shared feature subspace of users and a sparse matrix is used to characterize the discriminative features in each specific domain. Extensive experiments on two real-world datasets have been conducted to confirm that the proposed algorithm transfers knowledge in a better way to improve the quality of recommendation and outperforms the state-of-the-art recommendation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source code and datasets are available at https://github.com/sysulawliet/LSCD.

  2. 2.

    http://jmcauley.ucsd.edu/data/amazon.

  3. 3.

    https://grouplens.org/datasets/hetrec-2011.

References

  1. Zheng, B., Su, H., Zheng, K., Zhou, X.: Landmark-based route recommendation with crowd intelligence. Data Sci. Eng. 1(2), 86–100 (2016)

    Article  Google Scholar 

  2. Zhao, Z.L., Wang, C.D., Wan, Y.Y., Lai, J.H.: Recommendation in feature space sphere. Electron. Commer. Res. Appl. 26, 109–118 (2017)

    Article  Google Scholar 

  3. Hu, Q.Y., Zhao, Z.L., Wang, C.D., Lai, J.H.: An item orientated recommendation algorithm from the multi-view perspective. Neurocomputing 269, 261–272 (2017)

    Article  Google Scholar 

  4. Jannach, D., Zanker, M., Felfering, A., Friedrich, G.: Recommender Systems: An Introduction. Addison Wesley Publishing, Boston (2013)

    Google Scholar 

  5. Zhao, Z.L., Wang, C.D., Lai, J.H.: AUI&GIV: recommendation with asymmetric user influence and global importance value. PLoS ONE 11(2), e0147944 (2016)

    Article  Google Scholar 

  6. Allab, K., Labiod, L., Nadif, M.: A Semi-NMF-PCA unified framework for data clustering. IEEE Trans. Knowl. Data Eng. 29(1), 2–16 (2017)

    Article  Google Scholar 

  7. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, pp. 1257–1264 (2007)

    Google Scholar 

  8. Guo, G., Zhang, J., Thalmann, D.: Merging trust in collaborative filtering to alleviate data sparsity and cold start. Knowl.-Based Syst. 57, 57–68 (2014)

    Article  Google Scholar 

  9. Tan, B., Song, Y., Zhong, E., Yang, Q.: Transitive transfer learning. In: KDD, pp. 1155–1164 (2015)

    Google Scholar 

  10. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: WSDM, pp. 287–296 (2011)

    Google Scholar 

  11. Wei, S., Zheng, X., Chen, D., Chen, C.: A hybrid approach for movie recommendation via tags and ratings. Electron. Commer. Res. Appl. 18, 83–94 (2016)

    Article  Google Scholar 

  12. Xin, X., Liu, Z., Lin, C.Y., Huang, H., Wei, X., Guo, P.: Cross-domain collaborative filtering with review text. In: IJCAI, pp. 1827–1834 (2015)

    Google Scholar 

  13. McAuley, J.J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR, pp. 43–52 (2016)

    Google Scholar 

  14. Song, T., Peng, Z., Wang, S., Fu, W., Hong, X., Yu, P.S.: Review-based cross-domain recommendation through joint tensor factorization. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10177, pp. 525–540. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55753-3_33

    Chapter  Google Scholar 

  15. Moreno, O., Shapira, B., Rokach, L., Shani, G.: TALMUD: transfer learning for multiple domains. In: CIKM, pp. 425–434 (2012)

    Google Scholar 

  16. Hu, L., Cao, J., Xu, G., Cao, L., Gu, Z., Zhu, C.: Personalized recommendation via cross-domain triadic factorization. In: WWW, pp. 595–606 (2013)

    Google Scholar 

  17. Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: Cross-domain recommendation via cluster-level latent factor model. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8189, pp. 161–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40991-2_11

    Chapter  Google Scholar 

  18. Liu, Y.F., Hsu, C.Y., Wu, S.H.: Non-linear cross-domain collaborative filtering via hyper-structure transfer. In: ICML, pp. 1190–1198 (2015)

    Google Scholar 

  19. Chen, J., Zhou, J., Ye, J.: Integrating low-rank and group-sparse structures for robust multi-task learning. In: KDD, pp. 42–50 (2011)

    Google Scholar 

  20. Candes, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis. J. ACM 58(3), 1–39 (2011)

    Article  MathSciNet  Google Scholar 

  21. Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: KDD, pp. 650–658 (2008)

    Google Scholar 

  22. Iwata, T., Takeuchi, K.: Cross-domain recommendation without shared users or items by sharing latent vector distributions. In: AISTATS, pp. 379–387 (2015)

    Google Scholar 

  23. Ren, S., Gao, S., Liao, J., Guo, J.: Improving cross-domain recommendation through probabilistic cluster-level latent factor model. In: AAAI, pp. 4200–4201 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (61502543 & 61602189), Guangdong Natural Science Funds for Distinguished Young Scholar (2016A030306014), the Ph.D. Start-up Fund of Natural Science Foundation of Guangdong Province, China (2016A030310457), and Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (2016TQ03X542).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Dong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, ZL., Huang, L., Wang, CD., Huang, D. (2018). Low-Rank and Sparse Cross-Domain Recommendation Algorithm. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10827. Springer, Cham. https://doi.org/10.1007/978-3-319-91452-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91452-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91451-0

  • Online ISBN: 978-3-319-91452-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics