Skip to main content

Tusnády’s Problem, the Transference Principle, and Non-uniform QMC Sampling

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2016)

Abstract

It is well-known that for every \(N \ge 1\) and \(d \ge 1\) there exist point sets \(x_1, \dots , x_N \in [0,1]^d\) whose discrepancy with respect to the Lebesgue measure is of order at most \((\log N)^{d-1} N^{-1}\). In a more general setting, the first author proved together with Josef Dick that for any normalized measure \(\mu \) on \([0,1]^d\) there exist points \(x_1, \dots , x_N\) whose discrepancy with respect to \(\mu \) is of order at most \((\log N)^{(3d+1)/2} N^{-1}\). The proof used methods from combinatorial mathematics, and in particular a result of Banaszczyk on balancings of vectors. In the present note we use a version of the so-called transference principle together with recent results on the discrepancy of red-blue colorings to show that for any \(\mu \) there even exist points having discrepancy of order at most \((\log N)^{d-\frac{1}{2}} N^{-1}\), which is almost as good as the discrepancy bound in the case of the Lebesgue measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aistleitner, C., Dick, J.: Low-discrepancy point sets for non-uniform measures. Acta Arith. 163(4), 345–369 (2014). https://doi.org/10.4064/aa163-4-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Aistleitner, C., Dick, J.: Functions of bounded variation, signed measures, and a general Koksma–Hlawka inequality. Acta Arith. 167(2), 143–171 (2015). https://doi.org/10.4064/aa167-2-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Banaszczyk, W.: On series of signed vectors and their rearrangements. Random Struct. Algorithms 40(3), 301–316 (2012). https://doi.org/10.1002/rsa.20373

    Article  MathSciNet  MATH  Google Scholar 

  4. Bansal, N., Dadush, D., Garg, S.: An algorithm for Komlós conjecture matching Banaszczyk’s bound. In: Dinur, I. (ed.) IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9–11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pp. 788–799. IEEE Computer Society (2016). https://doi.org/10.1109/FOCS.2016.89

  5. Bansal, N., Garg, S.: Algorithmic discrepancy beyond partial coloring. http://arxiv.org/abs/1611.01805

  6. Beck, J.: Balanced two-colorings of finite sets in the square. I. Combinatorica 1(4), 327–335 (1981). https://doi.org/10.1007/BF02579453

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, J.: Some upper bounds in the theory of irregularities of distribution. Acta Arith. 43(2), 115–130 (1984)

    Article  MathSciNet  Google Scholar 

  8. Beck, J.: Balanced two-colorings of finite sets in the cube. In: Proceedings of the Oberwolfach Meeting “Kombinatorik” (1986), vol. 73, pp. 13–25. (1989). https://doi.org/10.1016/0012-365X(88)90129-X

    Article  MathSciNet  Google Scholar 

  9. Beck, J., Chen, W.W.L.: Irregularities of Distribution. Cambridge Tracts in Mathematics, vol. 89. Cambridge University Press, Cambridge (1987). https://doi.org/10.1017/CBO9780511565984

  10. Bilyk, D.: Roth’s orthogonal function method in discrepancy theory and some new connections. A Panorama of Discrepancy Theory. Lecture Notes in Mathematics, vol. 2107, pp. 71–158. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04696-9_2

    MATH  Google Scholar 

  11. Bilyk, D., Lacey, M.T., Vagharshakyan, A.: On the small ball inequality in all dimensions. J. Funct. Anal. 254(9), 2470–2502 (2008). https://doi.org/10.1016/j.jfa.2007.09.010

    Article  MathSciNet  MATH  Google Scholar 

  12. Cambou, M., Hofert, M., Lemieux, C.: Quasi-random numbers for copula models. http://arxiv.org/abs/1508.03483

  13. Chazelle, B.: The Discrepancy Method. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511626371

  14. Chen, W.W.L.: On irregularities of distribution and approximate evaluation of certain functions. Q. J. Math. Oxf. Ser. (2) 36(142), 173–182 (1985). https://doi.org/10.1093/qmath/36.2.173

    Article  MathSciNet  MATH  Google Scholar 

  15. Dick, J., Irrgeher, C., Leobacher, G., Pillichshammer, F.: On the optimal order of integration in Hermite spaces with finite smoothness. http://arxiv.org/abs/1608.06061

  16. Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511761188

  17. Götz, M.: Discrepancy and the error in integration. Monatsh. Math. 136(2), 99–121 (2002). https://doi.org/10.1007/s006050200037

    Article  MathSciNet  MATH  Google Scholar 

  18. Hlawka, E., Mück, R.: A transformation of equidistributed sequences. In: Applications of Number Theory to Numerical Analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971), pp. 371–388. Academic Press, New York (1972)

    Chapter  Google Scholar 

  19. Hlawka, E., Mück, R.: Über eine Transformation von gleichverteilten Folgen. II. Computing (Arch. Elektron. Rechnen) 9, 127–138 (1972)

    Article  MathSciNet  Google Scholar 

  20. Larsen, K.G.: On range searching in the group model and combinatorial discrepancy. SIAM J. Comput. 43(2), 673–686 (2014)

    Article  MathSciNet  Google Scholar 

  21. Levy, A., Ramadas, H., Rothvoss, T.: Deterministic discrepancy minimization via the multiplicative weight update method. http://arxiv.org/abs/1611.08752

  22. Lovász, L., Spencer, J., Vesztergombi, K.: Discrepancy of set-systems and matrices. Eur. J. Comb. 7(2), 151–160 (1986). https://doi.org/10.1016/S0195-6698(86)80041-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Matoušek, J.: On the discrepancy for boxes and polytopes. Monatsh. Math. 127(4), 325–336 (1999). https://doi.org/10.1007/s006050050044

    Article  MathSciNet  MATH  Google Scholar 

  24. Matoušek, J.: Geometric Discrepancy. Algorithms and Combinatorics, vol. 18. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-03942-3

  25. Matoušek, J., Nikolov, A., Talwar, K.: Factorization norms and hereditary discrepancy. https://arxiv.org/abs/1408.1376

  26. Nelsen, R.B.: An Introduction to Copulas. Springer Series in Statistics, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  27. Nikolov, A.: Tighter bounds for the discrepancy of boxes and polytopes. Mathematika http://arxiv.org/abs/1701.05532. (to appear)

  28. Rosenblatt, M.: Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472 (1952)

    Article  MathSciNet  Google Scholar 

  29. Roth, K.F.: On irregularities of distribution. Mathematika 1, 73–79 (1954)

    Article  MathSciNet  Google Scholar 

  30. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. In: Measures of Complexity, pp. 11–30. Springer, Cham (2015). (Reprint of Theor. Probability Appl. 16 (1971), 264–280)

    Google Scholar 

Download references

Acknowledgements

This paper was conceived while the authors were taking a walk in the vicinity of Rodin’s Gates of Hell sculpture on Stanford University campus during the MCQMC 2016 conference. We want to thank the MCQMC organizers for bringing us together. Based on this episode, we like to call the open problem stated in the first section of this paper the Gates of Hell Problem.

The first author is supported by the Austrian Science Fund (FWF), project Y-901. The third author is supported by an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Aistleitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aistleitner, C., Bilyk, D., Nikolov, A. (2018). Tusnády’s Problem, the Transference Principle, and Non-uniform QMC Sampling. In: Owen, A., Glynn, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2016. Springer Proceedings in Mathematics & Statistics, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-91436-7_8

Download citation

Publish with us

Policies and ethics