Skip to main content

Hot New Directions for Quasi-Monte Carlo Research in Step with Applications

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 241))

Abstract

This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube \([0,1]^s\) and in \({\mathbb {R}}^s\), and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension s under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when s is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achtsis, N., Cools, R., Nuyens, D.: Conditional sampling for barrier option pricing under the Heston model. In: Dick, J., Kuo, F.Y., Peters, G., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 253–269. Springer, Berlin (2013)

    Chapter  Google Scholar 

  2. Acworth, P., Broadie, M., Glasserman, P.: A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing. In: Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof, P. (eds.) Monte Carlo and quasi-Monte Carlo methods 1996, pp. 1–18. Springer, Berlin (1998)

    MATH  Google Scholar 

  3. Ammon, A., Hartung, T., Jansen, K., Leövey, H., Vollmer, J.: On the efficient numerical solution of lattice systems with low-order couplings. Comput. Phys. Commun. 198, 71–81 (2016)

    Article  MathSciNet  Google Scholar 

  4. Caflisch, R.E., Morokoff, W., Owen, A.B.: Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. J. Comput. Financ. 1, 27–46 (1997)

    Article  Google Scholar 

  5. Cohen, A., DeVore, R.: Approximation of high-dimensional parametric PDEs. Acta Numer. 24, 1–159 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput. 28, 2162–2188 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cools, R., Kuo, F.Y., Nuyens, D., Suryanarayana, G.: Tent-transformed lattice rules for integration and approximation of multivariate non-periodic functions. J. Complex. 36, 166–181 (2016)

    Article  MathSciNet  Google Scholar 

  8. Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  9. Dick, J., Gantner, R.N., Le Gia, Q.T., Schwab, Ch.: Higher order Quasi-Monte Carlo integration for Bayesian estimation (in review)

    Google Scholar 

  10. Dick, J., Irrgeher, Ch., Leobacher, G., Pillichshammer, F.: On the optimal order of integration in Hermite spaces with finite smoothness. SIAM J. Numer. Anal. (to appear)

    Google Scholar 

  11. Dick, J., Pillichshammer, F., Waterhouse, B.J.: The construction of good extensible rank-\(1\) lattices. Math. Comput. 77, 2345–2374 (2008)

    Article  MathSciNet  Google Scholar 

  12. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the Quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  Google Scholar 

  13. Dick, J., Nuyens, D., Pillichshammer, F.: Lattice rules for nonperiodic smooth integrands. Numer. Math. 126, 259–291 (2014)

    Article  MathSciNet  Google Scholar 

  14. Dick, J., Kuo, F.Y., Le Gia, Q.T., Nuyens, D., Schwab, Ch.: Higher order QMC Galerkin discretization for parametric operator equations. SIAM J. Numer. Anal. 52, 2676–2702 (2014)

    Article  MathSciNet  Google Scholar 

  15. Dick, J., Kuo, F.Y., Le Gia, Q.T., Schwab, Ch.: Fast QMC matrix-vector multiplication. SIAM J. Sci. Comput. 37, A1436–A1450 (2015)

    Article  MathSciNet  Google Scholar 

  16. Dick, J., Kuo, F.Y., Le Gia, Q.T., Schwab, Ch.: Multi-level higher order QMC Galerkin discretization for affine parametric operator equations. SIAM J. Numer. Anal. 54, 2541–2568 (2016)

    Article  MathSciNet  Google Scholar 

  17. Dick, J., Le Gia, Q.T., Schwab, Ch.: Higher order Quasi-Monte Carlo integration for holomorphic, parametric operator equations. SIAM/ASA J. Uncertain. Quantif. 4, 48–79 (2016)

    Article  MathSciNet  Google Scholar 

  18. Dietrich, C.R., Newsam, G.H.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18, 1088–1107 (1997)

    Article  MathSciNet  Google Scholar 

  19. Feischl, M., Kuo, F.Y., Sloan, I.H.: Fast random field generation with \(H\)-matrices. Numer. Math. (to appear)

    Google Scholar 

  20. Ganesh, M., Kuo, F.Y., Sloan, I.H.: Quasi-Monte Carlo finite element wave propagation in heterogeneous random media (in preparation)

    Google Scholar 

  21. Ganesh, M., Hawkins, S.C.: A high performance computing and sensitivity analysis algorithm for stochastic many-particle wave scattering. SIAM J. Sci. Comput. 37, A1475–A1503 (2015)

    Article  MathSciNet  Google Scholar 

  22. Gantner, R.N., Herrmann, L., Schwab, Ch.: Quasi-Monte Carlo integration for affine-parametric, elliptic PDEs: local supports and product weights SIAM. J. Numer. Anal. 56(1), 111–135 (2018)

    Article  MathSciNet  Google Scholar 

  23. Gilbert, A.D., Wasilkowski, G.W.: Small superposition dimension and active set construction for multivariate integration under modest error demand. J. Complex. 42, 94–109 (2017)

    Article  MathSciNet  Google Scholar 

  24. Gilbert, A.D., Graham, I.G., Kuo, F.Y., Scheichl, R., Sloan, I.H.: Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients (in preparation)

    Google Scholar 

  25. Gilbert, A.D., Kuo, F.Y., Nuyens, D., Wasilkowski, G.W.: Efficient implementation of the multivariate decomposition method (in review)

    Google Scholar 

  26. Giles, M.B.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)

    Article  MathSciNet  Google Scholar 

  27. Giles, M.B., Waterhouse, B.J.: Multilevel quasi-Monte Carlo path simulation. Radon Ser. Comp. Appl. Math. 8, 1–18 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Giles, M.B., Kuo, F.Y., Sloan, I.H.: Combining sparse grids, multilevel MC and QMC for elliptic PDEs with random coefficients (in this volume)

    Google Scholar 

  29. Giles, M.B., Kuo, F.Y., Sloan, I.H., Waterhouse, B.J.: Quasi-Monte Carlo for finance applications. ANZIAM J. 50, C308–C323 (CTAC2008) (2008)

    Article  MathSciNet  Google Scholar 

  30. Goda, T.: Good interlaced polynomial lattice rules for numerical integration in weighted Walsh spaces. J. Comput. Appl. Math. 285, 279–294 (2015)

    Article  MathSciNet  Google Scholar 

  31. Goda, T., Dick, J.: Construction of interlaced scrambled polynomial lattice rules of arbitrary high order. Found. Comput. Math. 15, 1245–1278 (2015)

    Article  MathSciNet  Google Scholar 

  32. Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Analysis of circulant embedding methods for sampling stationary random fields. SIAM J. Numer. Anal. (to appear)

    Google Scholar 

  33. Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Circulant embedding with QMC – analysis for elliptic PDE with lognormal coefficients. Numer. Math. (to appear)

    Google Scholar 

  34. Graham, I.G., Parkinson, M.J., Scheichl, R.: Modern Monte Carlo variants for uncertainty quantification in neutron transport. In: Dick, J., Kuo. F.Y., Woźniakowski, H. (eds.) Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan pp. 455–481. Springer (2018)

    Chapter  Google Scholar 

  35. Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694 (2011)

    Article  MathSciNet  Google Scholar 

  36. Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, Ch., Sloan, I.H.: QMC FE methods for PDEs with log-normal random coefficients. Numer. Math. 131, 329–368 (2015)

    Article  MathSciNet  Google Scholar 

  37. Griebel, M., Kuo, F.Y., Sloan, I.H.: The smoothing effect of integration in \({{\mathbb{R}}}^{d}\) and the ANOVA decomposition. Math. Comput. 82, 383–400 (2013); and the note in Math. Comput. 86, 1847–1854 (2017)

    Google Scholar 

  38. Griewank, A., Kuo, F.Y., Leövey, H., Sloan, I.H.: High dimensional integration of kinks and jumps – smoothing by preintegration. J. Comput. Appl. Math. (to appear)

    Google Scholar 

  39. Gunzburger, M., Webster, C., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)

    Article  MathSciNet  Google Scholar 

  40. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis. Springer, Heidelberg (2015)

    Book  Google Scholar 

  41. Haji-Ali, A.L., Nobile, F., Tempone, R.: Multi-index Monte Carlo: when sparsity meets sampling. Numer. Math. 132, 767–806 (2016)

    Article  MathSciNet  Google Scholar 

  42. Harbrecht, H., Peters, M., Siebenmorgen, M.: On the quasi-Monte Carlo method with Halton points for elliptic PDEs with log-normal diffusion. Math. Comput. 86, 771–797 (2017)

    Article  MathSciNet  Google Scholar 

  43. Herrmann, L., Schwab, Ch.: QMC integration for lognormal-parametric, elliptic PDEs: local supports imply product weights (in review)

    Google Scholar 

  44. Hickernell, F.J.: Obtaining \(O(N^{-2+\varepsilon })\) convergence for lattice quadrature rules. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274–289. Springer, Berlin (2002)

    Chapter  Google Scholar 

  45. Hickernell, F.J., Niederreiter, H.: The existence of good extensible rank-\(1\) lattices. J. Complex. 19, 286–300 (2003)

    Article  MathSciNet  Google Scholar 

  46. Hickernell, F.J., Hong, H.S., LÉcuyer, P., Lemieux, C.: SIAM J. Sci. Comput. 22, 1117–1138 (2000)

    Article  MathSciNet  Google Scholar 

  47. Jansen, K., Leövey, H., Griewank, A., Müller-Preussker, M.: Quasi-Monte Carlo methods for lattice systems: a first look. Comput. Phys. Commun. 185, 948–959 (2014)

    Article  MathSciNet  Google Scholar 

  48. Kazashi, Y.: Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients. IMA J. Numer. Anal. (to appear)

    Google Scholar 

  49. Kuo, F.Y., Nuyens, D.: Application of quasi-Monte Carlo methods to PDEs with random coefficients – an overview and tutorial (in this volume)

    Google Scholar 

  50. Kuo, F.Y., Nuyens, D.: Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients - a survey of analysis and implementation. Found. Comput. Math. 16, 1631–1696 (2016)

    Article  MathSciNet  Google Scholar 

  51. Kuo, F.Y., Dunsmuir, W.D.M., Sloan, I.H., Wand, M.P., Womersley, R.S.: Quasi-Monte Carlo for highly structured generalised response models. Methodol. Comput. Appl. 10, 239–275 (2008)

    Article  MathSciNet  Google Scholar 

  52. Kuo, F.Y., Sloan, I.H., Wasilkowski, G.W., Waterhouse, B.J.: Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands. J. Complex. 26, 135–160 (2010)

    Article  MathSciNet  Google Scholar 

  53. Kuo, F.Y., Sloan, I.H., Wasilkowski, G.W., Woźniakowski, H.: Liberating the dimension. J. Complex. 26, 422–454 (2010)

    Article  MathSciNet  Google Scholar 

  54. Kuo, F.Y., Sloan, I.H., Wasilkowski, G.W., Woźniakowski, H.: On decompositions of multivariate functions. Math. Comput. 79, 953–966 (2010)

    Article  MathSciNet  Google Scholar 

  55. Kuo, F.Y., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo methods for high dimensional integration: the standard weighted-space setting and beyond. ANZIAM J. 53, 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  56. Kuo, F.Y., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficient. SIAM J. Numer. Anal. 50, 3351–3374 (2012)

    Article  MathSciNet  Google Scholar 

  57. Kuo, F.Y., Schwab, Ch., Sloan, I.H.: Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficient. Found. Comput. Math. 15, 411–449 (2015)

    Article  MathSciNet  Google Scholar 

  58. Kuo, F.Y., Nuyens, D., Plaskota, L., Sloan, I.H., Wasilkowski, G.W.: Infinite-dimensional integration and the multivariate decomposition method. J. Comput. Appl. Math. 326, 217–234 (2017)

    Article  MathSciNet  Google Scholar 

  59. Kuo, F.Y., Scheichl, R., Schwab, Ch., Sloan, I.H., Ullmann, E.: Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems. Math. Comput. 86, 2827–2860 (2017)

    Article  MathSciNet  Google Scholar 

  60. Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York (2009)

    MATH  Google Scholar 

  61. Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  62. Nguyen, D.T.P., Nuyens, D.: Multivariate integration over \(\mathbb{R}^s\) with exponential rate of convergence. J. Comput. Appl. Math. 315, 327–342 (2017)

    Article  MathSciNet  Google Scholar 

  63. Nichols, J.A., Kuo, F.Y.: Fast CBC construction of randomly shifted lattice rules achieving \(\cal{O}(N^{-1+\delta })\) convergence for unbounded integrands in \(\mathbb{R}^s\) in weighted spaces with POD weights. J. Complex. 30, 444–468 (2014)

    Article  Google Scholar 

  64. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  65. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, II: Standard Information for Functionals. European Mathematical Society, Zürich (2010)

    Book  Google Scholar 

  66. Nuyens, D.: The construction of good lattice rules and polynomial lattice rules. In: Kritzer, P., Niederreiter, H., Pillichshammer, F., Winterhof, A. (eds.) Uniform Distribution and Quasi-Monte Carlo Methods. Radon Series on Computational and Applied Mathematics, vol. 15, pp. 223–256. De Gruyter, Berlin (2014)

    Google Scholar 

  67. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-\(1\) lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75, 903–920 (2006)

    Article  MathSciNet  Google Scholar 

  68. Nuyens, D., Cools, R.: Fast component-by-component construction of rank-\(1\) lattice rules with a non-prime number of points. J. Complex. 22, 4–28 (2006)

    Article  MathSciNet  Google Scholar 

  69. Owen, A.B.: Scrambled net variance for integrals of smooth functions. Ann. Stat. 25, 1541–1562 (1997)

    Article  MathSciNet  Google Scholar 

  70. Owen, A.B.: Halton sequences avoid the origin. SIAM Rev. 48, 487–503 (2006)

    Article  MathSciNet  Google Scholar 

  71. Robbe, P., Nuyens, D., Vandewalle, S.: A multi-index quasi-Monte Carlo algorithm for lognormal diffusion problems. SIAM J. Sci. Comput. 39, S851–S872 (2017)

    Article  MathSciNet  Google Scholar 

  72. Scheichl, R., Stuart, A., Teckentrup, A.L.: Quasi-Monte Carlo and multilevel Monte Carlo methods for computing posterior expectations in elliptic inverse problems. SIAM/ASA J. Uncertain. Quantif. 5, 493–518 (2017)

    Article  MathSciNet  Google Scholar 

  73. Schwab, Ch., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stoch astic PDEs. Acta Numer. 20, 291–467 (2011)

    Article  MathSciNet  Google Scholar 

  74. Sinescu, V., Kuo, F.Y., Sloan, I.H.: On the choice of weights in a function space for quasi-Monte Carlo methods for a class of generalised response models in statistics. In: Dick, J., Kuo, F.Y., Peters, G., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 631–647. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  75. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  76. Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complex. 14, 1–33 (1998)

    Article  MathSciNet  Google Scholar 

  77. Sloan, I.H., Kuo, F.Y., Joe, S.: Constructing randomly shifted lattice rules in weighted Sobolev spaces. SIAM J. Numer. Anal. 40, 1650–1665 (2002)

    Article  MathSciNet  Google Scholar 

  78. Sloan, I.H., Wang, X., Woźniakowski, H.: Finite-order weights imply tractability of multivariate integration. J. Complex. 20, 46–74 (2004)

    Article  MathSciNet  Google Scholar 

  79. Wasilkowski, G.W.: On tractability of linear tensor product problems for \(\infty \)-variate classes of functions. J. Complex. 29, 351–369 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from the Australian Research Council (FT130100655 and DP150101770) and the KU Leuven research fund (OT:3E130287 and C3:3E150478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Y. Kuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuo, F.Y., Nuyens, D. (2018). Hot New Directions for Quasi-Monte Carlo Research in Step with Applications. In: Owen, A., Glynn, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2016. Springer Proceedings in Mathematics & Statistics, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-91436-7_6

Download citation

Publish with us

Policies and ethics