Skip to main content

The Trio Identity for Quasi-Monte Carlo Error

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 241))

Abstract

Monte Carlo methods approximate integrals by sample averages of integrand values. The error of Monte Carlo methods may be expressed as a trio identity: the product of the variation of the integrand, the discrepancy of the sampling measure, and the confounding. The trio identity has different versions, depending on whether the integrand is deterministic or Bayesian and whether the sampling measure is deterministic or random. Although the variation and the discrepancy are common in the literature, the confounding is relatively unknown and under-appreciated. Theory and examples are used to show how the cubature error may be reduced by employing the low discrepancy sampling that defines quasi-Monte Carlo methods. The error may also be reduced by rewriting the integral in terms of a different integrand. Finally, the confounding explains why the cubature error might decay at a rate different from that of the discrepancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acworth, P., Broadie, M., Glasserman, P.: A comparison of some Monte Carlo techniques for option pricing. In: Niederreiter, H., Hellekalek, P., Larcher, G., Zinterhof, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 1–18. Springer, New York (1998)

    Chapter  Google Scholar 

  2. Anitescu, M., Chen, J., Stein, M.: An inversion-free estimating equation approach for Gaussian process models. J. Comput. Graph. Stat. (2016)

    Google Scholar 

  3. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  4. Bayer, C., Hoel, H., von Schwerin, E., Tempone, R.: On nonasymptotic optimal stopping criteria in Monte Carlo simulations. SIAM J. Sci. Comput. 36, A869–A885 (2014)

    Article  MathSciNet  Google Scholar 

  5. Caflisch, R.E., Morokoff, W., Owen, A.: Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. J. Comput. Financ. 1, 27–46 (1997)

    Article  Google Scholar 

  6. Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jiménez Rugama, Ll.A., Li, D., Rathinavel, J., Tong, X., Zhang, K., Zhang, Y., Zhou, X.: GAIL: Guaranteed Automatic Integration Library (versions 1.0–2.2). MATLAB software (2013–2017). http://gailgithub.github.io/GAIL_Dev/

  7. Creutzig, J., Dereich, S., Müller-Gronbach, T., Ritter, K.: Infinite-dimensional quadrature and approximation of distributions. Found. Comput. Math. 9, 391–429 (2009)

    Article  MathSciNet  Google Scholar 

  8. Diaconis, P.: Bayesian numerical analysis. In: Gupta, S.S., Berger, J.O. (eds.) Statistical Decision Theory and Related Topics IV, Papers from the 4th Purdue Symposium, West Lafayette, Indiana 1986, vol. 1, pp. 163–175. Springer, New York (1988)

    Google Scholar 

  9. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  10. Faure, H.: Discrépance de suites associées à un système de numération (en dimension \(s\)). Acta Arith. 41, 337–351 (1982)

    Article  MathSciNet  Google Scholar 

  11. Genz, A.: Comparison of methods for the computation of multivariate normal probabilities. Comput. Sci. Stat. 25, 400–405 (1993)

    Google Scholar 

  12. Giles, M.: Multilevel Monte Carlo methods. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer Proceedings in Mathematics and Statistics, vol. 65. Springer, Berlin (2013)

    MATH  Google Scholar 

  13. Giles, M.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)

    Article  MathSciNet  Google Scholar 

  14. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56, 607–617 (2008)

    Article  MathSciNet  Google Scholar 

  15. Heinrich, S.: Multilevel Monte Carlo methods. In: Margenov, S., Wasniewski, J., Yalamov, P.Y. (eds.) Large-Scale Scientific Computing, Third International Conference, LSSC 2001. Lecture Notes in Computer Science, vol. 2179, pp. 58–67. Springer, Berlin (2001)

    Chapter  Google Scholar 

  16. Heinrich, S., Hickernell, F.J., Yue, R.X.: Optimal quadrature for Haar wavelet spaces. Math. Comput. 73, 259–277 (2004)

    Article  MathSciNet  Google Scholar 

  17. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. 67, 299–322 (1998)

    Article  MathSciNet  Google Scholar 

  18. Hickernell, F.J.: Goodness-of-fit statistics, discrepancies and robust designs. Stat. Probab. Lett. 44, 73–78 (1999)

    Article  MathSciNet  Google Scholar 

  19. Hickernell, F.J., Woźniakowski, H.: The price of pessimism for multidimensional quadrature. J. Complex. 17, 625–659 (2001)

    Article  MathSciNet  Google Scholar 

  20. Hickernell, F.J., Wang, X.: The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension. Math. Comput. 71, 1641–1661 (2002)

    Article  MathSciNet  Google Scholar 

  21. Hickernell, F.J., Jiménez Rugama, Ll.A.: Reliable adaptive cubature using digital sequences. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014. Springer Proceedings in Mathematics and Statistics, vol. 163, pp. 367–383. Springer, Berlin (2016)

    Google Scholar 

  22. Hickernell, F.J., Müller-Gronbach, T., Niu, B., Ritter, K.: Multi-level Monte Carlo algorithms for infinite-dimensional integration on \(\mathbb{R}^\mathbb{N}\). J. Complex. 26, 229–254 (2010)

    Article  Google Scholar 

  23. Hickernell, F.J., Jiang, L., Liu, Y., Owen, A.B.: Guaranteed conservative fixed width confidence intervals via Monte Carlo sampling. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer Proceedings in Mathematics and Statistics, vol. 65, pp. 105–128. Springer, Berlin (2013)

    Chapter  Google Scholar 

  24. Hickernell, F.J., Jiménez Rugama, Ll.A., Li, D.: Adaptive quasi-Monte Carlo methods for cubature (2017+). Submitted for publication, arXiv:1702.01491 [math.NA]

  25. Hlawka, E.: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pura Appl. 54, 325–333 (1961)

    Article  MathSciNet  Google Scholar 

  26. Jiang, L.: Guaranteed adaptive Monte Carlo methods for estimating means of random variables. Ph.D. thesis, Illinois Institute of Technology (2016)

    Google Scholar 

  27. Jiménez Rugama, Ll.A., Hickernell, F.J.: Adaptive multidimensional integration based on rank-1 lattices. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014. Springer Proceedings in Mathematics and Statistics, vol. 163, pp. 407–422. Springer, Berlin (2016)

    Google Scholar 

  28. Koksma, J.F.: Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1. Mathematica B (Zutphen) 11, 7–11 (1942/1943)

    Google Scholar 

  29. Liu, R., Owen, A.B.: Estimating mean dimensionality. J. Am. Stat. Assoc. 101, 712–721 (2006)

    Article  Google Scholar 

  30. Meng, X.: Statistical paradises and paradoxes in big data (2017+). In preparation

    Google Scholar 

  31. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory 30, 51–70 (1988)

    Article  MathSciNet  Google Scholar 

  32. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)

    Google Scholar 

  33. Niederreiter, H., Xing, C.: Quasirandom points and global function fields. In: Cohen, S., Niederreiter, H. (eds.) Finite Fields and Applications. London Mathematical Society Lecture Note Series, vol. 233, pp. 269–296. Cambridge University Press, Cambridge (1996)

    Chapter  Google Scholar 

  34. Niu, B., Hickernell, F.J., Müller-Gronbach, T., Ritter, K.: Deterministic multi-level algorithms for infinite-dimensional integration on \(\mathbb{R}^{\mathbb{N}}\). J. Complex. 27, 331–351 (2011)

    Article  Google Scholar 

  35. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume I: Linear Information. EMS Tracts in Mathematics, vol. 6. European Mathematical Society, Zürich (2008)

    Book  Google Scholar 

  36. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume II: Standard Information for Functionals. EMS Tracts in Mathematics, vol. 12. European Mathematical Society, Zürich (2010)

    Book  Google Scholar 

  37. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems: Volume III: Standard Information for Operators. EMS Tracts in Mathematics, vol. 18. European Mathematical Society, Zürich (2012)

    Book  Google Scholar 

  38. O’Hagan, A.: Bayes–Hermite quadrature. J. Stat. Plan. Inference 29, 245–260 (1991)

    Article  MathSciNet  Google Scholar 

  39. Owen, A.B.: Randomly permuted \((t, m, s)\)-nets and \((t, s)\)-sequences. In: Niederreiter, H., Shiue, P.J.S. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol. 106, pp. 299–317. Springer, New York (1995)

    Chapter  Google Scholar 

  40. Owen, A.B.: Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34, 1884–1910 (1997)

    Article  MathSciNet  Google Scholar 

  41. Owen, A.B.: Scrambled net variance for integrals of smooth functions. Ann. Stat. 25, 1541–1562 (1997)

    Article  MathSciNet  Google Scholar 

  42. Parker, R.J., Reigh, B.J., Gotwalt, C.M.: Approximate likelihood methods for estimation and prediction in Gaussian process regression models for computer experiments (2016+). Submitted for publication

    Google Scholar 

  43. Rasmussen, C.E., Ghahramani, Z.: Bayesian Monte Carlo. In: Thrun, S., Saul, L.K., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 489–496. MIT Press, Cambridge (2003)

    Google Scholar 

  44. Rhee, C., Glynn, P.: A new approach to unbiased estimation for SDE’s. In: Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., Uhrmacher, A.M. (eds.) Proceedings of the 2012 Winter Simulation Conference (2012)

    Google Scholar 

  45. Ritter, K.: Average-Case Analysis of Numerical Problems. Lecture Notes in Mathematics, vol. 1733. Springer, Berlin (2000)

    MATH  Google Scholar 

  46. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  47. Sloan, I.H., Woźniakowski, H.: An intractability result for multiple integration. Math. Comput. 66, 1119–1124 (1997)

    Article  MathSciNet  Google Scholar 

  48. Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Comput. Math. Math. Phys. 7, 86–112 (1967)

    Article  MathSciNet  Google Scholar 

  49. Wasilkowski, G.W.: On tractability of linear tensor product problems for \(\infty \)-variate classes of functions. J. Complex. 29, 351–369 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the organizers of MCQMC 2016 for an exceptional conference. The author is indebted to his colleagues in the MCQMC community for all that he has learned from them. In particular, the author thanks Xiao-Li Meng for introducing the trio identity and for discussions related to its development. The author also thanks Lluís Antoni Jiménez Rugama for helpful comments in preparing this tutorial. This work is partially supported by the National Science Foundation grant DMS-1522687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred J. Hickernell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hickernell, F.J. (2018). The Trio Identity for Quasi-Monte Carlo Error. In: Owen, A., Glynn, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2016. Springer Proceedings in Mathematics & Statistics, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-91436-7_1

Download citation

Publish with us

Policies and ethics