Skip to main content

Musical Descriptions Based on Formal Concept Analysis and Mathematical Morphology

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10872))

Included in the following conference series:

Abstract

In the context of mathematical and computational representations of musical structures, we propose algebraic models for formalizing and understanding the harmonic forms underlying musical compositions. These models make use of ideas and notions belonging to two algebraic approaches: Formal Concept Analysis (FCA) and Mathematical Morphology (MM). Concept lattices are built from interval structures whereas mathematical morphology operators are subsequently defined upon them. Special equivalence relations preserving the ordering structure of the lattice are introduced in order to define musically relevant quotient lattices modulo congruences. We show that the derived descriptors are well adapted for music analysis by taking as a case study Ligeti’s String Quartet No. 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following the Roadmap described in [18], we prefer to consider MIR as the field of Music Information Research instead of limiting the scope to purely Music Information Retrieval. This approach constitutes the core of an ongoing research project entitled SMIR (Structural Music Information Research: Introducing Algebra, Topology and Category Theory into Computational Musicology). See http://repmus.ircam.fr/moreno/smir.

  2. 2.

    See [21] for an interesting discussion on the mutual influences between the Darmstadt school on Formal Concept Analysis and the French tradition on Treillis de Galois.

  3. 3.

    See the Mutabor language (http://www.math.tu-dresden.de/~mutabor/) for a music programming language making use of the FCA-based Standard Language for Music Theory [12] originally conceived by Rudolf Wille and currently developed at the University of Dresden.

  4. 4.

    Note that, at this stage, the time information is not taken into account, and a musical excerpt is considered as an unordered set of chords.

  5. 5.

    http://www.sagemath.org/.

  6. 6.

    Note that the lattice contains the nodes representing the harmonic forms, and additional nodes, labeled with an arbitrary number, arising from the completion to obtain a complete lattice [16]. These intermediate nodes are already present in Wille’s original lattice-based formalization of the diatonic scale.

  7. 7.

    An interesting question, which still remains open, concerns the possible ways of generating chains which are musically relevant by carefully selecting the underlying equivalence classes.

References

  1. Atif, J., Bloch, I., Distel, F., Hudelot, C.: Mathematical morphology operators over concept lattices. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS (LNAI), vol. 7880, pp. 28–43. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38317-5_2

    Chapter  MATH  Google Scholar 

  2. Atif, J., Bloch, I., Hudelot, C.: Some relationships between fuzzy sets, mathematical morphology, rough sets, F-transforms, and formal concept analysis. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 24(S2), 1–32 (2016)

    Article  MathSciNet  Google Scholar 

  3. Barbut, M., Frey, L., Degenne, A.: Techniques ordinales en analyse des données. Hachette, Paris (1972)

    MATH  Google Scholar 

  4. Birkhoff, G.: Lattice Theory, vol. 25, 3rd edn. American Mathematical Society, Providence (1979)

    MATH  Google Scholar 

  5. Bloch, I., Heijmans, H., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartman, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 857–947. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4_14

    Chapter  Google Scholar 

  6. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  7. Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, Boston (1994)

    MATH  Google Scholar 

  8. Heijmans, H.J.A.M., Ronse, C.: The algebraic basis of mathematical morphology - part I: dilations and erosions. Comput. Vis. Graph. Image Proc. 50, 245–295 (1990)

    Article  Google Scholar 

  9. Leclerc, B.: Lattice valuations, medians and majorities. Discret. Math. 111(1), 345–356 (1993)

    Article  MathSciNet  Google Scholar 

  10. Monjardet, B.: Metrics on partially ordered sets–a survey. Discret. Math. 35(1), 173–184 (1981)

    Article  MathSciNet  Google Scholar 

  11. Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. ISTE-Wiley, Hoboken (2010)

    MATH  Google Scholar 

  12. Neumaier, W., Wille, R.: Extensionale Standardsprache der Musiktheorie: eine Schnittstelle zwischen Musik und Informatik. In: Hesse, H.P. (ed.) Mikrotöne III, pp. 149–167. Helbing, Innsbruck (1990)

    Google Scholar 

  13. Noll, T., Brand, M.: Morphology of chords. In: Perspectives in Mathematical and Computational Music Theory, vol. 1, p. 366 (2004)

    Google Scholar 

  14. Ronse, C.: Adjunctions on the lattices of partitions and of partial partitions. Appl. Algebra Eng. Commun. Comput. 21(5), 343–396 (2010)

    Article  MathSciNet  Google Scholar 

  15. Ronse, C., Heijmans, H.J.A.M.: The algebraic basis of mathematical morphology - part II: openings and closings. Comput. Vis. Graph. Image Proc. 54, 74–97 (1991)

    MATH  Google Scholar 

  16. Schlemmer, T., Andreatta, M.: Using formal concept analysisto represent chroma systems. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 189–200. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39357-0_15

    Chapter  Google Scholar 

  17. Schlemmer, T., Schmidt, S.E.: A formal concept analysis of harmonic forms and interval structures. Ann. Math. Artif. Intell. 59(2), 241–256 (2010)

    Article  MathSciNet  Google Scholar 

  18. Serra, X., Magas, M., Benetos, E., Chudy, M., Dixon, S., Flexer, A., Gómez, E., Gouyon, F., Herrera, P., Jorda, S., et al.: Roadmap for music information research (2013)

    Google Scholar 

  19. Serra, J. (ed.): Image Analysis and Mathematical Morphology, Part II: Theoretical Advances. Academic Press, London (1988)

    Google Scholar 

  20. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets. ASIC, pp. 445–470. Springer, Dordrecht (1982). https://doi.org/10.1007/978-94-009-7798-3_15

    Chapter  Google Scholar 

  21. Wille, R.: Sur la fusion des contextes individuels. Mathématiques et Sciences Humaines 85, 57–71 (1984)

    MathSciNet  MATH  Google Scholar 

  22. Wille, R.: Musiktheorie und Mathematik. In: Götze, H. (ed.) Musik und Mathematik, pp. 4–31. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-95474-0_2

    Chapter  Google Scholar 

  23. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 314–339. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01815-2_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moreno Andreatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agon, C., Andreatta, M., Atif, J., Bloch, I., Mascarade, P. (2018). Musical Descriptions Based on Formal Concept Analysis and Mathematical Morphology. In: Chapman, P., Endres, D., Pernelle, N. (eds) Graph-Based Representation and Reasoning. ICCS 2018. Lecture Notes in Computer Science(), vol 10872. Springer, Cham. https://doi.org/10.1007/978-3-319-91379-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91379-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91378-0

  • Online ISBN: 978-3-319-91379-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics