Skip to main content

Lifted Most Probable Explanation

  • Conference paper
  • First Online:
Book cover Graph-Based Representation and Reasoning (ICCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10872))

Included in the following conference series:

Abstract

Standard approaches for inference in probabilistic formalisms with first-order constructs include lifted variable elimination (LVE) for single queries, boiling down to computing marginal distributions. To handle multiple queries efficiently, the lifted junction tree algorithm (LJT) uses a first-order cluster representation of a knowledge base and LVE in its computations. Another type of query asks for a most probable explanation (MPE) for given events. The purpose of this paper is twofold: (i) We formalise how to compute an MPE in a lifted way with LVE and LJT. (ii) We present a case study in the area of IT security for risk analysis. A lifted computation of MPEs exploits symmetries, while providing a correct and exact result equivalent to one computed on ground level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46073-4_3

    Chapter  Google Scholar 

  2. Ceylan, İ.İ., Borgwardt, S., Lukasiewicz, T.: Most probable explanations for probabilistic database queries. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (2017)

    Google Scholar 

  3. Chen, H., Erol, Y., Shen, E., Russell, S.: Probabilistic model-based approach for heart beat detection. Physiol. Measur. 37(9), 1404 (2016)

    Article  Google Scholar 

  4. Dawid, A.P.: Applications of a general propagation algorithm for probabilistic expert systems. Stat. Comput. 2(1), 25–36 (1992)

    Article  Google Scholar 

  5. Dechter, R.: Bucket elimination: a unifying framework for probabilistic inference. In: Learning and Inference in Graphical Models, pp. 75–104. MIT Press (1999)

    Chapter  Google Scholar 

  6. Gribkoff, E., van den Broeck, G., Suciu, D.: The most probable database problem. In: Proceedings of the 1st International Workshop on Big Uncertain Data (2014)

    Google Scholar 

  7. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. Ser. B: Methodol. 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Milch, B., Zettelmoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: Proceedings of the 23rd Conference on Artificial Intelligence, AAAI 2008, pp. 1062–1068 (2008)

    Google Scholar 

  9. Muñoz-González, L., Sgandurra, D., Barrère, M., Lupu, E.C.: Exact inference techniques for the analysis of Bayesian attack graphs. IEEE Trans. Dependable Secure Comput. PP(99), 1–14 (2017)

    Article  Google Scholar 

  10. Nilsson, D.: An efficient algorithm for finding the M most probable configurations in probabilistic expert systems. Stat. Comput. 8(2), 159–173 (1998)

    Article  Google Scholar 

  11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (1988)

    MATH  Google Scholar 

  12. Poole, D.: First-order probabilistic inference. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI 2003 (2003)

    Google Scholar 

  13. de Salvo Braz, R.: Lifted first-order probabilistic inference. Ph.D. thesis, University of Illinois at Urbana Champaign (2007)

    Google Scholar 

  14. de Salvo Braz, R., Amir, E., Roth, D.: MPE and partial inversion in lifted probabilistic variable elimination. In: Proceedings of the 21st Conference on Artificial Intelligence, AAAI 2006 (2006)

    Google Scholar 

  15. Schröder, M., Lüdtke, S., Bader, S., Krüger, F., Kirste, T.: LiMa: sequential lifted marginal filtering on multiset state descriptions. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI), vol. 10505, pp. 222–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67190-1_17

    Chapter  Google Scholar 

  16. Shenoy, P.P., Shafer, G.R.: Axioms for probability and belief-function propagation. Uncertain. Artif. Intell. 4(9), 169–198 (1990)

    Article  MathSciNet  Google Scholar 

  17. Shterionov, D., Renkens, J., Vlasselaer, J., Kimmig, A., Meert, W., Janssens, G.: The most probable explanation for probabilistic logic programs with annotated disjunctions. In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS (LNAI), vol. 9046, pp. 139–153. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23708-4_10

    Chapter  Google Scholar 

  18. Taghipour, N., Davis, J., Blockeel, H.: First-order decomposition trees. In: Advances in Neural Information Processing Systems 26, pp. 1052–1060. Curran Associates, Inc. (2013)

    Google Scholar 

  19. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1), 393–439 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Zhang, N.L., Poole, D.: A simple approach to Bayesian network computations. In: Proceedings of the 10th Canadian Conference on Artificial Intelligence, pp. 171–178 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braun, T., Möller, R. (2018). Lifted Most Probable Explanation. In: Chapman, P., Endres, D., Pernelle, N. (eds) Graph-Based Representation and Reasoning. ICCS 2018. Lecture Notes in Computer Science(), vol 10872. Springer, Cham. https://doi.org/10.1007/978-3-319-91379-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91379-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91378-0

  • Online ISBN: 978-3-319-91379-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics