Skip to main content

Holomorphic Curves in Symplectic Cobordisms

  • Chapter
  • First Online:
Holomorphic Curves in Low Dimensions

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2216))

  • 1164 Accesses

Abstract

In this chapter, the focus shifts from closed symplectic 4-manifolds to contact 3-manifolds and symplectic cobordisms between them, starting from a historical overview of the conjectures of Arnold and Weinstein, and leading into the development of Floer homology and symplectic field theory. We then give an overview of useful technical results on punctured holomorphic curves in cobordisms; as in Chap. 2, the focus here is on precise statements rather than proofs, though heuristic explanations are sometimes given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The literature is far from unanimous about the necessity of the minus sign in the formula \(\omega (X_{H_t},\cdot ) = -d H_t\), and there are related interdependent sign issues that arise in defining Hamiltonian action functionals, the standard symplectic forms on \({\mathbb R}^{2n}\) and on cotangent bundles, and various other things that depend on these. For further discussion of these issues, see [Wenb] and [MS17, Remark 3.1.6].

  2. 2.

    Note that a symplectically convex hypersurface in \(({\mathbb R}^{2n},\omega _{\operatorname {st}})\) need not be geometrically convex in the usual sense, e.g. every star-shaped hypersurface is symplectically convex.

  3. 3.

    This terminology varies among different authors: some would describe what we are defining here as a “symplectic cobordism from (M +, ξ +) to (M , ξ ).” This difference of opinion can probably only be resolved on the battlefield.

  4. 4.

    Minor annoyance: the natural orientation of \({\mathbb T}^2 \times {\mathbb R}^2\) is actually the opposite of the one defined by \(\omega _{\operatorname {can}}\) on \(T^*{\mathbb T}^2\). This is the reason for reversing the order of θ and ϕ in (8.10).

  5. 5.

    The word “equivalent” in this context does not mean that Hofer’s definition was the same, but simply that any uniform bound on Hofer’s energy implies a uniform bound on the version defined here, and vice versa. Thus for applications to compactness theory and asymptotics, the two notions are interchangeable.

  6. 6.

    In general, [Hof93] proved that every finite-energy punctured holomorphic curve has positive and negative punctures asymptotic to closed Reeb orbits, but the asymptotic approach to these orbits is much harder to describe if the orbits are not assumed to be at least Morse-Bott. In fact, the asymptotic orbit at each puncture may even fail to be unique up to parametrization, see [Sie17].

  7. 7.

    Requiring \({\mathcal U}\) to have compact closure is useful for technical reasons, as the proof of the theorem requires defining a Banach manifold of perturbed almost complex structures, and there is usually no natural way to put Banach space structures on spaces of maps whose domains are noncompact manifolds.

  8. 8.

    The condition in Proposition 8.50 requiring asymptotic orbits to be distinct and simply covered can be relaxed somewhat, e.g. a version of this result for embedded planes asymptotic to a multiply covered Reeb orbit is used to give a dynamical characterization of the standard contact lens spaces in [HLS15].

References

  1. P. Albers, B. Bramham, C. Wendl, On nonseparating contact hypersurfaces in symplectic 4-manifolds. Algebr. Geom. Topol. 10(2), 697–737 (2010)

    Article  MathSciNet  Google Scholar 

  2. M. Audin, M. Damian, Morse Theory and Floer Homology Universitext (Springer/EDP Sciences, London/Les Ulis, 2014). Translated from the 2010 French original by Reinie Erné

    Chapter  Google Scholar 

  3. F. Bourgeois, A Morse-Bott approach to contact homology. Ph.D. Thesis, Stanford University (2002)

    Google Scholar 

  4. F. Bourgeois, K. Mohnke, Coherent orientations in symplectic field theory. Math. Z. 248(1), 123–146 (2004)

    Google Scholar 

  5. F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, E. Zehnder, Compactness results in symplectic field theory. Geom. Topol. 7, 799–888 (2003)

    Article  MathSciNet  Google Scholar 

  6. J. Bowden, Exactly fillable contact structures without Stein fillings. Algebr. Geom. Topol. 12(3), 1803–1810 (2012)

    Article  MathSciNet  Google Scholar 

  7. B. Bramham, Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves. Ann. Math. (2) 181(3), 1033–1086 (2015)

    Google Scholar 

  8. Y. Chekanov, Differential algebra of Legendrian links. Invent. Math. 150(3), 441–483 (2002)

    Article  MathSciNet  Google Scholar 

  9. K. Cieliebak, Y. Eliashberg, From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds. American Mathematical Society Colloquium Publications, vol. 59 (American Mathematical Society, Providence, RI, 2012)

    Google Scholar 

  10. C. Conley, E. Zehnder, An index theory for periodic solutions of a Hamiltonian system, in Geometric Dynamics (Rio de Janeiro, 1981). Lecture Notes in Mathematics, vol. 1007 (Springer, Berlin, 1983), pp. 132–145

    Google Scholar 

  11. C.C. Conley, E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol’d. Invent. Math. 73(1), 33–49 (1983)

    Article  MathSciNet  Google Scholar 

  12. S.K. Donaldson, Floer Homology Groups in Yang-Mills Theory. Cambridge Tracts in Mathematics, vol. 147 (Cambridge University Press, Cambridge, 2002). With the assistance of M. Furuta and D. Kotschick

    Google Scholar 

  13. S.K. Donaldson, P.B. Kronheimer, The Geometry of Four-Manifolds. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, New York, 1990). Oxford Science Publications

    Google Scholar 

  14. D.L. Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations. Commun. Pure Appl. Math. 57(6), 726–763 (2004)

    Google Scholar 

  15. Y. Eliashberg, On symplectic manifolds with some contact properties. J. Differ. Geom. 33(1), 233–238 (1991)

    Article  MathSciNet  Google Scholar 

  16. Y. Eliashberg, Unique holomorphically fillable contact structure on the 3-torus. Int. Math. Res. Not. 2, 77–82 (1996)

    Google Scholar 

  17. Y. Eliashberg, Invariants in contact topology, in Proceedings of the International Congress of Mathematicians, vol. II, Berlin, 1998, pp. 327–338

    Google Scholar 

  18. Y. Eliashberg, A few remarks about symplectic filling. Geom. Topol. 8, 277–293 (2004)

    Article  MathSciNet  Google Scholar 

  19. Y. Eliashberg, A. Givental, H. Hofer, Introduction to symplectic field theory. Geom. Funct. Anal. Special Volume, 560–673 (2000)

    Google Scholar 

  20. J.B. Etnyre, K. Honda, On symplectic cobordisms. Math. Ann. 323(1), 31–39 (2002)

    Article  MathSciNet  Google Scholar 

  21. A. Floer, The unregularized gradient flow of the symplectic action. Commun. Pure Appl. Math. 41(6), 775–813 (1988)

    Article  MathSciNet  Google Scholar 

  22. A. Floer, An instanton-invariant for 3-manifolds. Commun. Math. Phys. 118(2), 215–240 (1988)

    Google Scholar 

  23. H. Geiges, An Introduction to Contact Topology. Cambridge Studies in Advanced Mathematics, vol. 109 (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  24. H. Geiges, K. Zehmisch, How to recognize a 4-ball when you see one. Müunster J. Math. 6, 525–554 (2013)

    Google Scholar 

  25. P. Ghiggini, Strongly fillable contact 3-manifolds without Stein fillings. Geom. Topol. 9, 1677–1687 (2005)

    Article  MathSciNet  Google Scholar 

  26. E. Giroux, Une structure de contact, même tendue, est plus ou moins tordue. Ann. Sci. École Norm. Sup. (4) 27(6), 697–705 (1994) [French, with English summary]

    Article  MathSciNet  Google Scholar 

  27. M. Gromov, Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)

    Article  MathSciNet  Google Scholar 

  28. H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math. 114(3), 515–563 (1993)

    Article  MathSciNet  Google Scholar 

  29. H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics (Birkhäuser, Basel, 1994)

    Chapter  Google Scholar 

  30. H. Hofer, K.Wysocki, E. Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants. Geom. Funct. Anal. 5(2), 270–328 (1995)

    Article  Google Scholar 

  31. H. Hofer, K.Wysocki, E. Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics. Ann. Inst. H. Poincaré Anal. Non Linéaire 13(3), 337–379 (1996)

    Article  MathSciNet  Google Scholar 

  32. H. Hofer, K.Wysocki, E. Zehnder, Properties of pseudoholomorphic curves in symplectisations. IV. Asymptotics with degeneracies, in Contact and Symplectic Geometry (Cambridge University Press, Cambridge, 1994/1996), pp. 78–117

    Google Scholar 

  33. H. Hofer, K.Wysocki, E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces. Ann. Math. (2) 148(1), 197–289 (1998)

    Article  MathSciNet  Google Scholar 

  34. H. Hofer, K.Wysocki, E. Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory. Top. Nonlin. Anal. 13, 381–475 (1999)

    MATH  Google Scholar 

  35. H. Hofer, K.Wysocki, E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics. Ann. Math. (2) 157(1), 125–255 (2003)

    Article  MathSciNet  Google Scholar 

  36. H. Hofer, K.Wysocki, E. Zehnder, Polyfold and Fredholm theory (2017). Preprint arXiv:1707.08941

    Google Scholar 

  37. U. Hryniewicz, J.E. Licata, P.A.S. Salomão, A dynamical characterization of universally tight lens spaces. Proc. Lond. Math. Soc. (3) 110(1), 213–269 (2015)

    Article  MathSciNet  Google Scholar 

  38. U. Hryniewicz, A. Momin, P.A.S. Salomão, A Poincaré-Birkhoff theorem for tight Reeb flows on S3. Invent. Math. 199(2), 333–422 (2015)

    Article  MathSciNet  Google Scholar 

  39. P. Kronheimer, T. Mrowka, Monopoles and Three-Manifolds. New Mathematical Monographs, vol. 10 (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  40. S. Lang, Real and Functional Analysis, 3rd edn. (Springer, New York, 1993)

    Book  Google Scholar 

  41. P. Massot, Topological methods in 3-dimensional contact geometry, in Contact and Symplectic Topology. Bolyai Society Mathematical Studies, vol. 26 (János Bolyai Mathematical Society, Budapest, 2014), pp. 27–83

    Google Scholar 

  42. P. Massot, K. NiederkrNuger, C.Wendl, Weak and strong fillability of higher dimensional contact manifolds. Invent. Math. 192(2), 287–373 (2013)

    Article  MathSciNet  Google Scholar 

  43. D. McDuff, D. Salamon, J-Holomorphic Curves and Symplectic Topology. American Mathematical Society Colloquium Publications, vol. 52, 2nd edn. (American Mathematical Society, Providence, RI, 2012)

    Google Scholar 

  44. D. McDuff, D. Salamon, Introduction to symplectic topology, 3rd edn. (Oxford University Press, Oxford, 2017)

    Book  Google Scholar 

  45. A. Momin, Contact homology of orbit complements and implied existence. J. Modern Dyn. 5(3), 409–472 (2011)

    Article  Google Scholar 

  46. J. Nelson, Automatic transversality in contact homology I: regularity. Abh. Math. Semin. Univ. Hambg. 85(2), 125–179 (2015)

    Article  MathSciNet  Google Scholar 

  47. H. Ohta, K. Ono, Simple singularities and symplectic fillings. J. Differ. Geom. 69(1), 1–42 (2005)

    Article  MathSciNet  Google Scholar 

  48. P. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds. Ann. Math. (2) 159(3), 1027–1158 (2004)

    Article  MathSciNet  Google Scholar 

  49. P.H. Rabinowitz, Periodic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 31(2), 157–184 (1978)

    Article  MathSciNet  Google Scholar 

  50. J. Robbin, D. Salamon, The Maslov index for paths. Topology 32(4), 827–844 (1993)

    Article  MathSciNet  Google Scholar 

  51. Y. Ruan, Topological sigma model and Donaldson-type invariants in Gromov theory. Duke Math. J. 83(2), 461–500 (1996)

    Article  MathSciNet  Google Scholar 

  52. D. Salamon, Lectures on Floer homology, in Symplectic Geometry and Topology (Park City, UT, 1997). IAS/Park City Mathematical Series, vol. 7 (American Mathematical Society, Providence, RI, 1999), pp. 143–229

    Google Scholar 

  53. M. Schwarz, Cohomology operations from S 1-cobordisms in Floer homology. Ph.D. Thesis, ETH Zürich (1995)

    Google Scholar 

  54. R. Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders. Commun. Pure Appl. Math. 61(12), 1631–1684 (2008)

    Article  MathSciNet  Google Scholar 

  55. R. Siefring, Intersection theory of punctured pseudoholomorphic curves. Geom. Topol. 15, 2351–2457 (2011)

    Article  MathSciNet  Google Scholar 

  56. R. Siefring, Finite-energy pseudoholomorphic planes with multiple asymptotic limits. Math. Ann. 368(1–2), 367–390 (2017)

    Article  MathSciNet  Google Scholar 

  57. C.H. Taubes, The Seiberg-Witten equations and the Weinstein conjecture. Geom. Topol. 11, 2117–2202 (2007)

    Article  MathSciNet  Google Scholar 

  58. A. Weinstein, Periodic orbits for convex Hamiltonian systems. Ann. Math. (2) 108(3), 507–518 (1978)

    Article  MathSciNet  Google Scholar 

  59. C. Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four. Comment. Math. Helv. 85(2), 347–407 (2010)

    Article  MathSciNet  Google Scholar 

  60. C. Wendl, Generic transversality in symplectizations. Two-part blog post, available at https://symplecticfieldtheorist.wordpress.com/2014/11/27/

  61. C. Wendl, Signs (or how to annoy a symplectic topologist). Blog post, available at https://symplecticfieldtheorist.wordpress.com/2015/08/23/

  62. C. Wendl, Lectures on Symplectic Field Theory. EMS Series of Lectures in Mathematics (to appear). Preprint arXiv:1612.01009

    Google Scholar 

  63. C. Wendl, Contact 3-manifolds, holomorphic curves and intersection theory (2017). Preprint arXiv:1706.05540

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wendl, C. (2018). Holomorphic Curves in Symplectic Cobordisms. In: Holomorphic Curves in Low Dimensions. Lecture Notes in Mathematics, vol 2216. Springer, Cham. https://doi.org/10.1007/978-3-319-91371-1_8

Download citation

Publish with us

Policies and ethics