Skip to main content

Uniruled Symplectic 4-Manifolds

  • Chapter
  • First Online:
  • 1206 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2216))

Abstract

This chapter includes a gentle introduction to the Gromov-Witten invariants, and then explores the relationship between these and McDuff’s results on rational/ruled surfaces, including a complete proof that the latter are the only symplectic 4-manifolds that are uniruled.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We are being intentionally vague here about the meaning of the words “perturbations of the nonlinear Cauchy-Riemann equation”. This can mean various things depending on the context and the precise definition of the intersection number (7.3) that one adopts, e.g. in the approaches of [MS12, CM07], the usual equation \(\bar {\partial }_J u = 0\) is generalized to allow generic dependence of J on points in the domain of u, while in [RT97, Ger], one instead introduces a generic nonzero term (inhomogeneous perturbation) on the right hand side of the equation. A more abstract functional-analytic approach is taken in [HWZa].

  2. 2.

    For slightly different reasons, the genus 0 invariants \(\operatorname {GW}_{0,m}^{(M,\omega )}(\alpha _1,\ldots ,\alpha _m;\beta )\) for m ≥ 3 are also integers whenever α 1, …, α m and β are all integral classes and (M, ω) is semipositive, see [MS12]. The semipositivity condition is always satisfied when \(\dim M \le 6\).

  3. 3.

    With a little more effort and intersection theory, one can show that \({\mathcal M}_S^{\operatorname {bad}}(J)\) is actually finite for generic J, but we will not need this.

  4. 4.

    “Indefinite” means that Q(e.e) is positive for some \(e \in {\mathbb Z}^2\) and negative for others. Equivalently, one could stipulate that for the induced real-valued nondegenerate quadratic form on \({\mathbb R}^2\), the maximum dimensions of subspaces on which this form is positive- or negative-definite are each 1.

References

  1. G.E. Bredon, Topology and Geometry (Springer, New York, 1993)

    Book  Google Scholar 

  2. K. Cieliebak, K. Mohnke, Symplectic hypersurfaces and transversality in Gromov-Witten theory. J. Symplectic Geom. 5(3), 281–356 (2007)

    Article  MathSciNet  Google Scholar 

  3. J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, 3rd edn. (Springer, New York, 1999). With additional contributions by E. Bannai, R.E. Borcherds, J. Leech, S.P. Norton, A.M. Odlyzko, R.A. Parker, L. Queen, B.B. Venkov

    Google Scholar 

  4. O. Debarre, Higher-Dimensional Algebraic Geometry. Universitext (Springer, New York, 2001)

    Book  Google Scholar 

  5. C. Gerig, C. Wendl, Generic transversality for unbranched covers of closed pseudoholomorphic curves. Commun. Pure Appl. Math. 70(3), 409–443 (2017)

    Article  MathSciNet  Google Scholar 

  6. A. Gerstenberger, Geometric transversality in higher genus Gromov-Witten theory (2013). Preprint arXiv:1309.1426

    Google Scholar 

  7. A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  8. M.W. Hirsch, Differential Topology (Springer, New York, 1994)

    Google Scholar 

  9. H. Hofer, K.Wysocki, E. Zehnder, Applications of polyfold theory I: the polyfolds of Gromov-Witten theory (2011). Preprint arXiv:1107.2097

    Google Scholar 

  10. M. Kontsevich, Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry. Commun. Math. Phys. 164(3), 525–562 (1994)

    Article  MathSciNet  Google Scholar 

  11. P.D. Lax, Linear Algebra and Its Applications. Pure and Applied Mathematics (Hoboken), 2nd edn. (Wiley-Interscience, Hoboken, NJ, 2007)

    Google Scholar 

  12. J.M. Lee, Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218 (Springer, New York, 2003)

    Chapter  Google Scholar 

  13. D. McDuff, The structure of rational and ruled symplectic 4-manifolds. J. Am. Math. Soc. 3(3), 679–712 (1990)

    MathSciNet  MATH  Google Scholar 

  14. D. McDuff, Immersed spheres in symplectic 4-manifolds. Ann. Inst. Fourier (Grenoble) 42(1–2), 369–392 (1992) [English, with French summary]

    Google Scholar 

  15. D. McDuff, D. Salamon, J-Holomorphic Curves and Quantum Cohomology. University Lecture Series, vol. 6 (American Mathematical Society, Providence, RI, 1994)

    Google Scholar 

  16. D. McDuff, D. Salamon, A survey of symplectic 4-manifolds with b + = 1. Turk. J. Math. 20(1), 47–60 (1996)

    Google Scholar 

  17. D. McDuff, D. Salamon, J-Holomorphic Curves and Symplectic Topology. American Mathematical Society Colloquium Publications, vol. 52, 2nd edn. (American Mathematical Society, Providence, RI, 2012)

    Google Scholar 

  18. D. McDuff, D. Salamon, Introduction to symplectic topology, 3rd edn. (Oxford University Press, Oxford, 2017)

    Book  Google Scholar 

  19. J.W. Milnor, Topology from the Differentiable Viewpoint. Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 1997). Based on notes by David W. Weaver; Revised reprint of the 1965 original

    Google Scholar 

  20. J. Milnor, D. Husemoller, Symmetric Bilinear Forms. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73 (Springer, New York, 1973)

    Google Scholar 

  21. J.W. Milnor, J.D. Stasheff, Characteristic Classes. Annals of Mathematics Studies, vol. 76 (Princeton University Press, Princeton, NJ, 1974)

    Google Scholar 

  22. J. Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves. Geom. Topol. 20(2), 779–1034 (2016)

    Article  MathSciNet  Google Scholar 

  23. Y. Ruan, G. Tian, Higher genus symplectic invariants and sigma models coupled with gravity. Invent. Math. 130, 455–516 (1997)

    Article  MathSciNet  Google Scholar 

  24. C.H. Taubes, The Seiberg-Witten and Gromov invariants. Math. Res. Lett 2(2), 221–238 (1995)

    Article  MathSciNet  Google Scholar 

  25. C.H. Taubes, Counting pseudo-holomorphic submanifolds in dimension 4. J. Differ. Geom. 44(4), 818–893 (1996)

    Article  MathSciNet  Google Scholar 

  26. C.H. Taubes, SW ⇒ Gr: from the Seiberg-Witten equations to pseudo-holomorphic curves. J. Am. Math. Soc. 9(3), 845–918 (1996)

    Article  MathSciNet  Google Scholar 

  27. R. Thom, Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86 (1954) [French]

    Article  MathSciNet  Google Scholar 

  28. C. Wendl, Transversality and super-rigidity for multiply covered holomorphic curves (2016). Preprint arXiv:1609.09867v3

    Google Scholar 

  29. A. Zinger, Pseudocycles and integral homology. Trans. Am. Math. Soc. 360(5), 2741–2765 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wendl, C. (2018). Uniruled Symplectic 4-Manifolds. In: Holomorphic Curves in Low Dimensions. Lecture Notes in Mathematics, vol 2216. Springer, Cham. https://doi.org/10.1007/978-3-319-91371-1_7

Download citation

Publish with us

Policies and ethics