Skip to main content

Part of the book series: Wireless Networks ((WN))

  • 432 Accesses

Abstract

This monograph contributes to investigating the reliability of wireless sensor networks in substations by analysing, characterizing and modeling EMIs caused by PD sources. We have studied the electromagnetic noise that is generated in substation for a band that contains most of classic wireless carrier frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid communication infrastructures: Motivations, requirements and challenges,” IEEE Communications Surveys and Tutorials, vol. 15 no 1, pp. 5–20, 2013.

    Google Scholar 

  2. S. M. Amin and B. F. Wollenberg, “Toward a smart grid: Power delivery for the 21st century,” IEEE Power and Energy Magazine, vol. 3 no 5, pp. 34–41, 2005.

    Google Scholar 

  3. V. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges of wireless sensor networks in smart grid,” IEEE Transactions on Industrial Electronics, vol. 57 no 10, pp. 3557–3564, 2010.

    Google Scholar 

  4. V. Gungor and F. Lambert, “A survey on communication networks for electric system automation,” Computer Networks Elsevier, vol. 50 no 7, pp. 877–897, 2006.

    Google Scholar 

  5. S. Tenbohlen, D. Denissov, S. M. Hoek, and S. M. Markalous, “Partial discharge measurement in the ultra high frequency (UHF) range,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, No 6, pp. 1544–1553, 2008.

    Google Scholar 

  6. P. J. Moore, I. E. Portugués, and I. A. Glover, “Radiometric location of partial discharges sources on energized high-voltage plant,” IEEE Transaction on Power Delivery, vol. 20 no. 3, pp. 2264–2272, 2005.

    Google Scholar 

  7. S. A. Bhatti, Q. Shan, I. A. Glover, R. Atkinson, I. E. Portugues, P. J. Moore, and R. Rutherford, “Impulsive noise modelling and prediction of its impact on the performance of WLAN receiver,” in 17th European Signal Processing Conference, 2009, pp. 1680–1684.

    Google Scholar 

  8. G. Madi, F. Sacuto, B. Vrigneau, B. L. Agba, Y. Pousset, R. Vauzelle, and F. Gagnon, “Impacts of impulsive noise from partial discharges on wireless systems performance: Application to MIMO precoders,” EURASIP Journal on Wireless Communications and Networking, vol. 186, pp. 1–12, 2011.

    Google Scholar 

  9. Q. Shan, I. Glover, P. J. Moore, I. E. Portugues, R. J. Watson, R. Rutherford, R. Atkinson, and S. Bhatti, “Laboratory assessment of WLAN performance degradation in the presence of impulsive noise,” in Wireless Communications and Mobile Computing Conference, 2008, pp. 859–863.

    Google Scholar 

  10. F. Sacuto, B. L. Agba, F. Gagnon, and F. Labeau, “Evolution of the RF characteristics of the impulsive noise in high voltage environment,” in IEEE SmartGridComm Workshop, 2012.

    Google Scholar 

  11. S. A. Bhatti, Q. Shan, I. A. Glover, and R. Atkinson, “Performance simulation of WLAN and zigbee in electricity substation impulsive noise environments,” in IEEE SmartGridComm Workshop, 2012.

    Google Scholar 

  12. D. A. Dickey and W. A. Fuller, “Distribution of the estimators for autoregressive time series with a unit root,” Journal of the American Statistical Association, vol. 74, No. 366, pp. 427–431, 1979.

    Google Scholar 

  13. H. Akaike, “Information theory and an extension of the maximum likelihood principle,” in Second International Symposium on Information Theory, 1973, pp. 267–281.

    Google Scholar 

  14. G. Schwarz, “Estimating the dimension of a model,” The annals of Statistics, vol. 6, No. 2, pp. 461–464, 1978.

    Google Scholar 

  15. H. Akaike, “A new look at the statistical model identification,” IEEE Transaction on Automatic Control, vol. 19 No. 6, pp. 716–723, 1974.

    Google Scholar 

  16. G. C. Montanari and A. Cavallini, “Partial discharge diagnostics: From apparatus monitoring to smart grid assessment,” IEEE Electrical Insulation Magazine, vol. 29, no. 3, pp. 8–17, 2015.

    Google Scholar 

  17. M. Wu, H. Cao, J. Cao, H. L. Nguyen, J. B. Gomes, and S. P. Krishnaswamy, “An overview of state-of-the-art partial discharge analysis techniques for condition monitoring,” IEEE Electrical Insulation Magazine, vol. 31, no. 6, pp. 22–35, 2015.

    Google Scholar 

  18. M. Shao and C. Nikias, “Signal processing with fractional lower order moments: Stable processes and their applications,” Proceedings of the IEEE, vol. 81, no. 7, pp. 986–1010, 1993.

    Google Scholar 

  19. E. Moulines and J.-F. Cardoso, “Asymptotic performance analysis of direction-finding algorithms based on fourth-order cumulant,” IEEE Transaction on Signal Processing, vol. 57, no. 8, pp. 214–224, 1995.

    Google Scholar 

  20. H. Sinaga, B. Phung, and T. Blackburn, “Partial discharge localization in transformers using UHF detection method,” IEEE Transaction on Dielectrics and Electrical Insulation, vol. 19, no. 6, pp. 1891–1900, 2012.

    Google Scholar 

  21. S. Markalous, S. Tenbohlen, and K. Feser, “Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals,” IEEE Transaction on Dielectrics and Electrical Insulation, vol. 15, no. 6, pp. 1576–1583, 2008.

    Google Scholar 

  22. Z. Tang, C. Li, X. Cheng, W. Wang, J. Li, and J. Li, “Partial discharge location in power transformers using wideband RF detection,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 13, no. 6, pp. 1193–1199, 2006.

    Google Scholar 

  23. H. L. V. Trees, Optimum Array Processing Part IV : Detection, Estimation and Modulation Theory, J. Wiley and Sons, Eds. Wiley-Interscience, 2004.

    Google Scholar 

  24. E. Gonen and J. M. Mendel, The Digital Signal Processing Handbook: Second Edition Wireless, NetNetwork, Sensor Array Processing and Nonlinear Signal Processing, V. K. Madisetti, Ed. CRC Press Taylor and Francis Group, 2010.

    Google Scholar 

  25. I. B. S. Ali, M. Au, B. L. Agba, and F. Gagnon, “Mitigation of impulsive interference in power substation with multi-antenna systems,” in IEEE ICUWB, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agba, B.L., Sacuto, F., Au, M., Labeau, F., Gagnon, F. (2019). Conclusions. In: Wireless Communications for Power Substations: RF Characterization and Modeling. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-91328-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91328-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91327-8

  • Online ISBN: 978-3-319-91328-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics