Skip to main content

A Physical Model of EMI Induced by a Partial Discharge Source

  • Chapter
  • First Online:
  • 474 Accesses

Part of the book series: Wireless Networks ((WN))

Abstract

In last chapters, an overview of electromagnetic interference induced by partial discharges and their impact on wireless communication systems has been discussed. Measurement campaigns in substations have been conducted. These sources can take place in high-voltage equipment like transformers, powerlines, bushing bars, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W. E. Pakala, E. R. Taylor, Jr., and R. T. Harrold, “Radio noise measurements on high voltage lines from 2.4 to 345 kV,” in IEEE Electromagnetic Compatibility Symposium Record, 1968, pp. 96–107.

    Google Scholar 

  2. I. Portugués, P. I. Moore, and I. A. Glover, “Characterization of radio frequency interference from high voltage electricity supply equipment,” ICAP. twelfth International Conference on Antennas and Propagation, vol. 2, pp. p 820–823, 2003.

    Google Scholar 

  3. M. Zimmermann and K. Dostert, “Analysis and modelling of impulsive noise in broadband power-line communication,” IEEE Transactions on Electromagnetic Compatibility, vol. 44 No 1, pp. 249–258, 2002.

    Google Scholar 

  4. ——, “Statistical-physical models of electromagnetic interference,” IEEE Transactions on Electromagnetic Compatibility, vol. 19 Issue 3, pp. 106–127, 1977.

    Google Scholar 

  5. P. H. Moose and J. M. O’dwyer, “A model for impulsive power-line radio disturbance due to gap-type discharges,” IEEE Transactions on Electromagnetic Compatibility, vol. 28 Issue:4, pp. 185–192, 1986, partial Discharge EM Noise.

    Google Scholar 

  6. Q. Shan, I. Glover, R. C. Atkinson, S. A. Bhatti, I. E. Portugues, P. J. Moore, R. Rutherford, R. J. Watson, M. de Fatima Q. V., A. M. N. Lima, and B. A. Souza, “Estimation of impulsive noise in an electricity substation,” IEEE Transaction on Electromagnetic Compatibility, vol. 53 No 3, pp. 653–663, 2011.

    Google Scholar 

  7. S. J. Townsend, The Theory of Ionization of Gases by Collision, C. London and Company, Eds. London, Constable and Company, ltd, 1910.

    Google Scholar 

  8. J. M. Meek and J. D. Craggs, Electric Breakdown of Gases, O. at the Clarendon Press, Ed. Oxford University Press, Amen House, London, 1953.

    Google Scholar 

  9. L. B. Loeb and J. M. Meek, “The mechanism of spark discharge in air at atmospheric pressure,” Journal of Applied Physics, vol. 11, pp. 438–447, 1940.

    Article  Google Scholar 

  10. R. J. V. Brunt and S. V. Kulkarni, “Stochastic properties of trichel-pulse corona: A non-Markovian random point process,” Physical Review. A, General Physics, vol. 42 No 8, pp. 4908–4932, 1990.

    Article  Google Scholar 

  11. R. J. V. Brunt, “Stochastic properties of partial-discharge phenomena,” IEEE Transactions on Electrical Insulation, vol. 26 No 5, pp. 902–947, 1991.

    Article  Google Scholar 

  12. M. Levesque, E. David, C. Hudon, and M. Belec, “Effect of surface degradation on slot partial discharge activity,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17 No 5, pp. 1428–1440, 2010.

    Article  Google Scholar 

  13. L. Niemeyer, “A generalized approach to partial discharge modelling,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2 No 4, pp. 510–528, 1995.

    Article  Google Scholar 

  14. F. Gutfleisch and L. Niemeyer, “Measurement and simulation of PD in epoxy voids,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 2 No 5, pp. 729–743, 1995.

    Article  Google Scholar 

  15. M. Levesque, E. David, and C. Hudon, “Effect of surface conditions on the electric field in air cavities,” IEEE Transactions on Electrical Insulation, vol. 20 No 1, pp. 71–81, 2013.

    Article  Google Scholar 

  16. M. Au, F. Gagnon, and B. L. Agba, “An experimental characterization of substation impulsive noise for a RF channel model,” Progress In Electromagnetics Research Symposium, PIERS Proceedings, vol. 1, pp. 1371–1376, 2013.

    Google Scholar 

  17. R. Bartnikas, “Partial discharges their mechanism, detection and measurement,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9 No 5, pp. 763–808, 2002.

    Article  Google Scholar 

  18. B. Fruth and L. Niemeyer, “The importance of statistical characteristics of partial discharge data,” IEEE Transactions on Electrical Insulation, vol. 27 No 1, pp. 60–69, 1992.

    Article  Google Scholar 

  19. V. Kogan, F. Dawson, G. Gao, and B. NIndra, “Surface corona suppression in high voltage stator winding end turns,” Electrical Electronics Insulation Conference and Electrical Manufacturing & Coil Winding Conference. Proceedings, vol. 1. No 1, pp. 411–415, 1995.

    Article  Google Scholar 

  20. E. David and L. Lamarre, “Low-frequency dielectric response of epoxy-mica insulated generator bars during multi-stress aging,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 14 no 1, pp. 212–226, 2006.

    Article  Google Scholar 

  21. I. Gallimberti, G. Marchesi, and R. Turri, “Corona formation and propagation in weakly and strongly attaching gases,” Proc. 8th Int. Conf. on Gas Discharges, vol. 1 No 1, pp. 587–594, 1985.

    Google Scholar 

  22. M. von Laue, “Comment on K. Zuber’s measurement of the spark discharge delay time,” Annals of Physics Liepzig, vol. 76, pp. 261–265, 1925.

    Article  Google Scholar 

  23. J. S. Chang, P. A. Lawless, and T. Yamamoto, “Corona discharge processes,” IEEE Transactions on Plasma Science, vol. 19 No 6, pp. 1152–1166, 1991.

    Article  Google Scholar 

  24. M. M. Rao, M. J. Thomas, and B. P. Singh, “Electromagnetic field emission from gas-to-air bushing in a GIS during switching operations,” IEEE Transactions on Electromagnetic Compatibility, vol. 49, No 2, pp. 313–321, 2007, electrical arc.

    Google Scholar 

  25. T. Okazaki, Z. Kawasaki, and A. Hirata, “Wideband characteristics of impulsive EM noise emitted from discharges and development of mathematical noise model,” in EMC, International Symposium on Electromagnetic Compatibility, vol. 2, 2005, pp. p 469–472.

    Google Scholar 

  26. S. Minegishi, H. Echigo, and R. Sato, “Frequency spectra of the arc current due to opening electric contacts in air,” IEEE Transactions on Electromagnetic Compatibility, vol. 31, No 4, pp. 342–345, 1989, arc Electrique.

    Google Scholar 

  27. M. P. Shinde and S. N. Gupta, “A model of HF impulsive atmospheric noise,” IEEE Transaction on Electromagnetic Compatibility, vol. EMC-16, No 2, pp. 71–75, 1974.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agba, B.L., Sacuto, F., Au, M., Labeau, F., Gagnon, F. (2019). A Physical Model of EMI Induced by a Partial Discharge Source. In: Wireless Communications for Power Substations: RF Characterization and Modeling. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-91328-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91328-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91327-8

  • Online ISBN: 978-3-319-91328-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics