Skip to main content

Part of the book series: Wireless Networks ((WN))

Abstract

The phenomenon of impulsive noise is generated by Partial discharge (PD) sources in high-voltage substations. A PD generates a current impulse, acoustic noise, visible and ultraviolet (UV) light and electromagnetic radiation , and accordingly its presence can be detected via several measurement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. E. Pakala, E. R. Taylor, Jr., and R. T. Harrold, “Radio noise measurements on high voltage lines from 2.4 to 345 kV,” in IEEE Electromagnetic Compatibility Symposium Record, 1968, pp. 96–107.

    Google Scholar 

  2. W. Pakala and V. Chartier, “Radio noise measurements on overhead power lines from 2.4 to 800 kV,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-90, issue 3, pp. 1155–1165, 1971.

    Google Scholar 

  3. C. H. Peck and P. Moore, “A direction-finding technique for wide-band impulsive noise source,” IEEE Transactions on Electromagnetic Compatibility, vol. 43, no. 2, pp. 149–154, 2001.

    Google Scholar 

  4. I. Portugués, P. I. Moore, and I. A. Glover, “Characterization of radio frequency interference from high voltage electricity supply equipment,” ICAP. twelfth International Conference on Antennas and Propagation, vol. 2, pp. p 820–823, 2003.

    Google Scholar 

  5. I. Portugues, P. Moore, I. Glover, C. Johnstone, R. McKosky, M. Goff, and L. van der Zel, “Rf-based partial discharge early warning system for air-insulated substations,” IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 20–29, 2009.

    Google Scholar 

  6. Q. Shan, I. Glover, R. C. Atkinson, S. A. Bhatti, I. E. Portugues, P. J. Moore, R. Rutherford, R. J. Watson, M. de Fatima Q. V., A. M. N. Lima, and B. A. Souza, “Estimation of impulsive noise in an electricity substation,” IEEE Transaction on Electromagnetic Compatibility, vol. 53 No 3, pp. 653–663, 2011.

    Google Scholar 

  7. C. Hudon and M. Bélec, “Partial discharge signal interpretation for generator diagnostics,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 12 No 2, pp. 297–319, 2005.

    Google Scholar 

  8. R. J. V. Brunt and S. V. Kulkarni, “Stochastic properties of trichel-pulse corona: A non-Markovian random point process,” Physical Review. A, General Physics, vol. 42 No 8, pp. 4908–4932, 1990.

    Google Scholar 

  9. R. J. V. Brunt, “Stochastic properties of partial-discharge phenomena,” IEEE Transactions on Electrical Insulation, vol. 26 No 5, pp. 902–947, 1991.

    Google Scholar 

  10. M. Levesque, E. David, C. Hudon, and M. Belec, “Effect of surface degradation on slot partial discharge activity,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17 No 5, pp. 1428–1440, 2010.

    Google Scholar 

  11. I. E. Portugués and P. J. Moore, “Study of propagation effects of wideband radiated RF signals from PD activity,” in IEEE Power Engineering Society General Meeting, 2006.

    Google Scholar 

  12. M. Levesque, E. David, and C. Hudon, “Effect of surface conditions on the electric field in air cavities,” IEEE Transactions on Electrical Insulation, vol. 20 No 1, pp. 71–81, 2013.

    Google Scholar 

  13. S. A. Bhatti, Q. Shan, I. A. Glover, R. Atkinson, I. E. Portugues, P. J. Moore, and R. Rutherford, “Impulsive noise modelling and prediction of its impact on the performance of WLAN receiver,” in 17th European Signal Processing Conference, 2009, pp. 1680–1684.

    Google Scholar 

  14. G. Madi, F. Sacuto, B. Vrigneau, B. L. Agba, Y. Pousset, R. Vauzelle, and F. Gagnon, “Impacts of impulsive noise from partial discharges on wireless systems performance: Application to MIMO precoders,” EURASIP Journal on Wireless Communications and Networking, vol. 186, pp. 1–12, 2011.

    Google Scholar 

  15. ——, “Parameter estimation for Middleton class A interference processes,” IEEE Transactions on Communications, vol. 37 no10, pp. 1042–1051, 1989.

    Google Scholar 

  16. S. Mallat, A Wavelet tour of Signal Processing, Elsevier, Ed. Academic Press, 1998.

    Google Scholar 

  17. Q. Shan, I. Glover, P. J. Moore, I. E. Portugues, R. J. Watson, R. Rutherford, R. Atkinson, and S. Bhatti, “Laboratory assessment of WLAN performance degradation in the presence of impulsive noise,” in Wireless Communications and Mobile Computing Conference, 2008, pp. 859–863.

    Google Scholar 

  18. F. Sacuto, “Adaptation d’un réseau sans fil de capteurs à une zone soumise à des interférences électromagnétiques dues aux hautes tensions,” Master’s thesis, École de technologie Supérieure Université Du Québec, 2010.

    Google Scholar 

  19. J. D. McDonald, Electric Power Substations Engineering: Third Edition. Cambridge University Press, 2012.

    Google Scholar 

  20. D. B. Percival and A. T. Walden, Wavelet methods for time series analysis. Cambridge University Press, 2000.

    Google Scholar 

  21. F. Sacuto, B. L. Agba, F. Gagnon, and F. Labeau, “Evolution of the RF characteristics of the impulsive noise in high voltage environment,” in IEEE SmartGridComm Workshop, 2012.

    Google Scholar 

  22. S. A. Bhatti, Q. Shan, I. A. Glover, and R. Atkinson, “Performance simulation of WLAN and zigbee in electricity substation impulsive noise environments,” in IEEE SmartGridComm Workshop, 2012.

    Google Scholar 

  23. D. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika, vol. 81 No 3, pp. 425–455, 1994.

    Article  MathSciNet  Google Scholar 

  24. H. Krim, D. Tucker, S. Mallat, and D. Donoho, “On denoising and the best signal representation,” IEEE Transactions on Information Theory, vol. 45 No 7, pp. 2225–2238, 1999.

    Article  MathSciNet  Google Scholar 

  25. X. Ma, C. Zhou, and I. J. Kemp, “Interpretation of wavelet analysis and its application in partial discharge detection,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9 No 3, pp. 446–457, 2002.

    Article  Google Scholar 

  26. M. Au, F. Gagnon, and B. L. Agba, “An experimental characterization of substation impulsive noise for a RF channel model,” Progress In Electromagnetics Research Symposium, PIERS Proceedings, vol. 1, pp. 1371–1376, 2013.

    Google Scholar 

  27. R. Bartnikas, “Partial discharges their mechanism, detection and measurement,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9 No 5, pp. 763–808, 2002.

    Article  Google Scholar 

  28. C. Hudon, M. Bélec, and M. Lévesque, “Study of slot partial discharges in air-cooled generators,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15 No 6, pp. 1675–1690, 2008.

    Article  Google Scholar 

  29. M. B. Wilk and R. Gnanadesikan, “Probability plotting methods for the analysis for the analysis of data,” Biometrika, vol. 55 No. 1, pp. 1–17, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agba, B.L., Sacuto, F., Au, M., Labeau, F., Gagnon, F. (2019). Impulsive Noise Measurements. In: Wireless Communications for Power Substations: RF Characterization and Modeling. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-91328-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91328-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91327-8

  • Online ISBN: 978-3-319-91328-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics