Skip to main content

On the Convex Model of Speckle Reduction

  • Conference paper
  • First Online:
Imaging, Vision and Learning Based on Optimization and PDEs (IVLOPDE 2016)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 484 Accesses

Abstract

Speckle reduction is an important issue in image processing realm. In this paper, we propose a novel model for restoring degraded images with multiplicative noise which follows a Nakagami distribution. A general penalty term based on the statistical property of the speckle noise is used to guarantee the convexity of the denoising model. Moreover, to deal with the minimizing problem, a generalized Bermudez-Moreno algorithm is adopted and its convergence is analysed. The experimental results on some images subject to multiplicative noise as well as comparisons to other state-of-the-art methods are also presented. The results can verify that the new model is reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Aja-Fernandez, C. Alberola-Lopez, On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9), 2694–2701 (2006)

    Article  Google Scholar 

  2. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems (Clarendon Press, Oxford, 2000)

    MATH  Google Scholar 

  3. F. Andreu-Vaillo, J.M. Mazón, V. Caselles, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, vol. 223 (Springer, Berlin, 2004)

    Book  Google Scholar 

  4. F. Argenti, A. Lapini, T. Bianchi, L. Alparone, Fast MAP despeckling based on Laplacian-Gaussian modeling of wavelet coefficients. IEEE Sci. Remote Sens. Lett. 9(1), 13–17 (2012)

    Article  Google Scholar 

  5. F. Argenti, A. Lapini, T. Bianchi, L. Alparone, A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci. Remote Sens. Mag. 1(3), 6–35 (2013)

    Article  Google Scholar 

  6. G. Aubert, J.F. Aujol, A variational approach to remove multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2006)

    Article  Google Scholar 

  7. G. Aubert, J. Aujol, A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  Google Scholar 

  8. J.F. Aujol, Some first-order algorithms for total variation based image restoration. J. Math. Imag. Vis. 34(3), 307–327 (2009)

    Article  MathSciNet  Google Scholar 

  9. A. Bermúdez, C. Moreno, Duality methods for solving variational inequalities. Comput. Math. Appl. 7(7), 43–58 (1981)

    Article  MathSciNet  Google Scholar 

  10. A. Chambolle, An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20(1–2), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  11. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  12. M. Dai, C. Peng, A. Chan, D. Loguinov, Bayesian wavelet shrinkage with edge detection for sar image despeckling. IEEE Trans. Geosci. Remote Sens. 42(8), 1642–1648 (2004)

    Article  Google Scholar 

  13. C. Deledalle, L. Denis, F. Tupin, Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 18(12), 2661–2672 (2009)

    Article  MathSciNet  Google Scholar 

  14. Y. Dong, T. Zeng, A convex variational model for restoring blurred images with multiplicative noise. SIAM J. Imag. Sci. 6(3), 1598–1625 (2013)

    Article  MathSciNet  Google Scholar 

  15. J.D. Gibson, A. Bovik, Handbook of Image and Video Processing (Academic, Amsterdam, 2000)

    MATH  Google Scholar 

  16. Y. Huang, M. Ng, Y. Wen, A new total variation method for multiplicative noise removal. SIAM J. Imag. Sci. 2(1), 20–40 (2009)

    Article  MathSciNet  Google Scholar 

  17. D. Kuan, A. Sawchuk, T. Strand, P. Chavel, Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech Signal Process. 35(3), 373–383 (1987)

    Article  Google Scholar 

  18. J. Lee, Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–168 (1980)

    Article  Google Scholar 

  19. J. Lee, Refined filtering of image noise using local statistics. Comput. Vis. Graph. Image Process. 15(4), 380–389 (1981)

    Article  Google Scholar 

  20. J. Lee, A simple speckle smoothing algorithm for synthetic aperture radar images. IEEE Trans. Syst. Man Cybern. 13(1), 85–89 (1983)

    Article  Google Scholar 

  21. J. Lee, J. Wen, T. Ainsworth, K. Chen, A. Chen, Improved sigma filter for speckle filtering of SAR imagery. IEEE Geosci. Remote Sens. 47(1), 202–213 (2009)

    Article  Google Scholar 

  22. H. Li, W. Hong, Y. Wu, P. Fan, Bayesian wavelet shrinkage with heterogeneity-adaptive threshold for SAR image despeckling based on generalized gamma distribution. IEEE Trans. Geosci. Remote Sens. 51(4), 2388–2402 (2013)

    Article  Google Scholar 

  23. A. Lopes, E. Nezry, R. Touzi, H. Laur, Maximum a posteriori speckle filtering and first order texture models in SAR images, in Geoscience and Remote Sensing Symposium (1990), pp. 2409–2412

    Google Scholar 

  24. X. Ma, H. Shen, J. Yang, P. Li, Polarimetric-spatial classification of SAR images based on the fusion of multiple classifiers. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 7(3), 961–971 (2014)

    Article  Google Scholar 

  25. S. Parrilli, M. Poderico, C. Angelino, L. Verdoliva, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans Geosci Remote Sens 50(2), 606–616 (2012)

    Article  Google Scholar 

  26. A. Pazy, On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space. Israel J. Math. 26(2), 197–204 (1977)

    Article  MathSciNet  Google Scholar 

  27. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 (Springer, Berlin, 1983)

    MATH  Google Scholar 

  28. J. Ranjani, S. Thiruvengadam, Dual-tree complex wavelet transform based SAR despeckling using interscale dependence. IEEE Trans. Geosci. Remote Sens. 48(6), 2723–2731 (2010)

    Article  Google Scholar 

  29. L. Rudin, S. Osher, E. Fatem, Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  30. J. Shi, S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imag. Sci. 1(3), 294–321 (2008)

    Article  MathSciNet  Google Scholar 

  31. G. Steidl, T. Teuber, Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imag. Vis. 36(2), 168–184 (2010)

    Article  MathSciNet  Google Scholar 

  32. T. Teuber, A. Lang, Nonlocal filters for removing multiplicative noise, in Scale Space and Variational Methods in Computer Vision (Springer, Berlin, 2012), pp. 50–61

    Book  Google Scholar 

  33. Y. Yu, S. Acton, Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the reviewers for their valuable and constructive comments. This work is sponsored by “Chenguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission, the key project of the National Natural Science Foundation of China (No. 61731009), the National Science Foundation of China (11271049, 61501188), RGC 12302714, and the Direct Grant for Research of the Chinese University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieyong Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, F., Fang, Y., Zeng, T. (2018). On the Convex Model of Speckle Reduction. In: Tai, XC., Bae, E., Lysaker, M. (eds) Imaging, Vision and Learning Based on Optimization and PDEs. IVLOPDE 2016. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-91274-5_6

Download citation

Publish with us

Policies and ethics