Skip to main content

A Convergent Fixed-Point Proximity Algorithm Accelerated by FISTA for the 0 Sparse Recovery Problem

  • Conference paper
  • First Online:
Imaging, Vision and Learning Based on Optimization and PDEs (IVLOPDE 2016)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

We propose an approximation model of the original 0 minimization model arising from various sparse signal recovery problems. The objective function of the proposed model uses the Moreau envelope of the 0 norm to promote the sparsity of the signal in a tight framelet system . This leads to a non-convex optimization problem involved the 0 norm. We identify a local minimizer of the proposed non-convex optimization problem with a global minimizer of a related convex optimization problem. Based on this identification, we develop a two stage algorithm for solving the proposed non-convex optimization problem and study its convergence. Moreover, we show that FISTA can be employed to speed up the convergence rate of the proposed algorithm to reach the optimal convergence rate of \(\mathcal {O}(1/k^2)\). We present numerical results to confirm the theoretical estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  2. E.J. Candès, T. Tao, The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  MathSciNet  Google Scholar 

  3. E. Candes, M. Wakin, S. Boyd, Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MathSciNet  Google Scholar 

  4. A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  5. T.F. Chan, J. Shen, H.-M. Zhou, Total variation wavelet inpainting. J. Math. Imaging Vision 25(1), 107–125 (2006)

    Article  MathSciNet  Google Scholar 

  6. F. Chen, L. Shen, Y. Xu, X. Zeng, The Moreau envelope approach for the L1/TV image denoising model. Inverse Prob. Imaging 8(1), 53–77 (2014)

    Article  MathSciNet  Google Scholar 

  7. P.L. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  8. I. Daubechies, R. DeVore, M. Fornasier, C. Guntuk, Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 53, 1–38 (2010)

    Article  MathSciNet  Google Scholar 

  9. D.L. Donoho, For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

    Article  MathSciNet  Google Scholar 

  10. J. Fan, R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  11. M. Fazel, H. Hindi, S.P. Boyd, Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices, in Proceedings of the 2003 American Control Conference, 2003, vol. 3 (IEEE, Piscataway, 2003), pp. 2156–2162

    Google Scholar 

  12. S. Foucart, M.-J. Lai, Sparsest solutions of underdetermined linear systems via q-minimization for 0 < q ≤ 1. Appl. Comput. Harmon. Anal. 26(3), 395–407 (2009)

    Article  MathSciNet  Google Scholar 

  13. T. Goldstein, S. Osher, The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  14. M.-J. Lai, Y. Xu, W. Yin, Improved iteratively reweighted least squares for unconstrained smoothed ∖ell_q minimization. SIAM J. Numer. Anal. 51(2), 927–957 (2013)

    Article  MathSciNet  Google Scholar 

  15. Q. Li, L. Shen, Y. Xu, N. Zhang, Multi-step fixed-point proximity algorithms for solving a class of optimization problems arising from image processing. Adv. Comput. Math. 41(2), 387–422 (2015)

    Article  MathSciNet  Google Scholar 

  16. M. Malek-Mohammadi, M. Babaie-Zadeh, A. Amini, C. Jutten, Recovery of low-rank matrices under affine constraints via a smoothed rank function. IEEE Trans. Signal Process. 62(4), 981–992 (2014)

    Article  MathSciNet  Google Scholar 

  17. O. Mangasarian, Minimum-support solutions of polyhedral concave programs*. Optimization 45(1–4), 149–162 (1999)

    Article  MathSciNet  Google Scholar 

  18. C.A. Micchelli, L. Shen, Y. Xu, Proximity algorithms for image models: denoising. Inverse Prob. 27(045009), 30 pp. (2011)

    Article  MathSciNet  Google Scholar 

  19. C.A. Micchelli, L. Shen, Y. Xu, X. Zeng, Proximity algorithms for the l 1tv image denoising model. Adv. Comput. Math. 38(2), 401–426 (2013)

    Article  MathSciNet  Google Scholar 

  20. M. Nikolova, Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model. Simul. 4(3), 960–991 (2005)

    Article  MathSciNet  Google Scholar 

  21. B. Recht, M. Fazel, P.A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  Google Scholar 

  22. R.T. Rockafellar, R.J.-B. Wets, Variational Analysis. Grundlehren der mathematischen Wissenschaften, vol. 317 (Springer, New York, 1998)

    Book  Google Scholar 

  23. L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  24. L. Shen, Y. Xu, X. Zeng, Wavelet inpainting with the 0 sparse regularization. Appl. Comput. Harmon. Anal. 41(1), 26–53 (2016)

    Article  MathSciNet  Google Scholar 

  25. H. Zou, The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author Xueying Zeng is supported by the Natural Science Foundation of China (No. 11701538, 11771408) and the Fundamental Research Funds for the Central Universities (No. 201562012). Both Lixin Shen and Yuesheng Xu were supported in part by the US National Science Foundation under Grant DMS-1522332. The author Yuesheng Xu is supported in part by the Special Project on High-performance Computing under the National Key R&D Program (No. 2016YFB0200602), and by the Natural Science Foundation of China under grants 11471013 and 11771464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuesheng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, X., Shen, L., Xu, Y. (2018). A Convergent Fixed-Point Proximity Algorithm Accelerated by FISTA for the 0 Sparse Recovery Problem. In: Tai, XC., Bae, E., Lysaker, M. (eds) Imaging, Vision and Learning Based on Optimization and PDEs. IVLOPDE 2016. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-91274-5_2

Download citation

Publish with us

Policies and ethics