Skip to main content

From Event-Oriented Models to Transition Systems

  • Conference paper
  • First Online:
Book cover Application and Theory of Petri Nets and Concurrency (PETRI NETS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10877))

Abstract

Two structurally different methods of associating transition system semantics to event-oriented models of distributed systems are distinguished in the literature. One of them is based on configurations (event sets), the other on residuals (model fragments). In this paper, a variety of models is investigated, ranging from extended prime event structures to configuration structures, and it is shown that the two semantics lead to isomorphic results. This strengthens prior work where bisimilarity (but not necessarily isomorphism) is achieved for a smaller range of models. Thanks to the isomorphisms obtained here, a wide range of facts known from the literature on configuration-based transition systems can be extended to residual-based ones.

E. Best, N. Gribovskaya and I. Virbitskaite—Supported by German Research Foundation through grant Be 1267/14-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    E.g., see [1, 2, 10, 11, 13,14,15,16, 24, 28].

  2. 2.

    E.g., see [3, 6, 7, 16, 17, 19, 22, 25].

  3. 3.

    Recalled below in Sect. 1.1.

  4. 4.

    One of which is also shown in Sect. 1.1.

  5. 5.

    In an event structure, an event is called non-executable or impossible if it does not occur in any configuration of the structure, i.e. the event is never executed.

  6. 6.

    As explained in Sect. 1.1 on the example described there.

  7. 7.

    If the transitivity of \(\rightarrow \) is assumed, the arrow from \(*\) to c could be omitted, of course.

  8. 8.

    Even if this was technically not always straightforward.

  9. 9.

    The general idea of retaining an appropriate amount of structure during residual semantics (or, for that matter, unfolding semantics, when applied, e.g., to a process algebra) is not novel, nor claimed to be so. However, its application to the transition semantics of event structures is hoped to shed some new light onto this general idea.

  10. 10.

    An event is enabled once all of its causal predecessors have occurred.

  11. 11.

    An event is enabled once at least one of its causal predecessors have occurred.

  12. 12.

    It was noted in [1] that, as far as finite configurations are concerned, this does not lead to an increase in expressive power.

  13. 13.

    We shall use the notation for the other models through the paper.

References

  1. Arbach, Y., Karcher, D., Peters, K., Nestmann, U.: Dynamic causality in event structures. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 83–97. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19195-9_6

    Chapter  Google Scholar 

  2. Armas-Cervantes, A., Baldan, B., Garcia-Banuelos, L.: Reduction of event structures under history preserving bisimulation. J. Log. Algebr. Methods Program. 85(6), 1110–1130 (2016)

    Article  MathSciNet  Google Scholar 

  3. Baier, C., Majster-Cederbaum, M.: The connection between event structure semantics and operational semantics for TCSP. Acta Inform. 31, 81–104 (1994)

    Article  MathSciNet  Google Scholar 

  4. Baldan, P., Corradini, A., Gadducci, F.: Domains and event structures for fusions. In: LICS, pp. 1–12 (2017)

    Google Scholar 

  5. Best, E., Gribovskaya, N., Virbitskaite, I.: Configuration- and residual-based transition systems for event structures with asymmetric conflict. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 132–146. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_11

    Chapter  MATH  Google Scholar 

  6. Boudol, G.: Flow event structures and flow nets. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 62–95. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2_4

    Chapter  Google Scholar 

  7. Crafa, S., Varacca, D., Yoshida, N.: Event structure semantics of parallel extrusion in the pi-calculus. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 225–239. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9_15

    Chapter  MATH  Google Scholar 

  8. Fecher, H., Majster-Cederbaum, M.: Event structures for arbitrary disruption. Fundam. Inform. 68(1–2), 103–130 (2005)

    MathSciNet  MATH  Google Scholar 

  9. van Glabbeek, R.J.: History preserving process graphs. Report, Stanford University. http://boole.stanford.edu/rvg/pub/abstracts/history

  10. van Glabbeek, R.J.: On the expressiveness of higher dimensional automata. Theor. Comput. Sci. 356(3), 265–290 (2006)

    Article  MathSciNet  Google Scholar 

  11. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for concurrent systems. Acta Inform. 37, 229–327 (2001)

    Article  MathSciNet  Google Scholar 

  12. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures. In: Proceedings of the LICS, pp. 199–209 (1995)

    Google Scholar 

  13. van Glabbeek, R., Plotkin, G.: Event structures for resolvable conflict. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 550–561. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28629-5_42

    Chapter  Google Scholar 

  14. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and Petri nets. Theor. Comput. Sci. 410(41), 4111–4159 (2009)

    Article  MathSciNet  Google Scholar 

  15. Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: An event structure semantics for general Petri nets. Theor. Comput. Sci. 153, 129–170 (1996)

    Article  MathSciNet  Google Scholar 

  16. Katoen, J.-P.: Quantitative and qualitative extensions of event structures. Ph.D. thesis, Twente University (1996)

    Google Scholar 

  17. Katoen, J.-P., Langerak, R., Latella, D.: Modeling systems by probabilistic process algebra: an event structures approach. In: IFIP Transactions, vol. C-2, pp. 253–268 (1993)

    Google Scholar 

  18. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384 (1976)

    Article  MathSciNet  Google Scholar 

  19. Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS. In: Formal Description Techniques V. IFIP Transactions, vol. C-10, pp. 331–346 (1993)

    Google Scholar 

  20. Langerak, R., Brinksma, E., Katoen, J.-P.: Causal ambiguity and partial orders in event structures. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 317–331. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63141-0_22

    Chapter  Google Scholar 

  21. Li, B., Koutny, M.: Unfolding CSPT-nets. In: Proceedings of the International Workshop on Petri Nets and Software Engineering (PNSE 2015), Brussels, Belgium, pp. 207–226, June 2015

    Google Scholar 

  22. Loogen, R., Goltz, U.: Modelling nondeterministic concurrent processes with event structures. Fundam. Inform. 14(1), 39–74 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Majster-Cederbaum, M., Roggenbach, M.: Transition systems from event structures revisited. Inf. Process. Lett. 67(3), 119–124 (1998)

    Article  MathSciNet  Google Scholar 

  24. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains. Theor. Comput. Sci. 13(1), 85–108 (1981)

    Article  MathSciNet  Google Scholar 

  25. Nielsen, M., Thiagarajan, P.S.: Regular event structures and finite Petri nets: the conflict-free case. In: Esparza, J., Lakos, C. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 335–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48068-4_20

    Chapter  MATH  Google Scholar 

  26. Pratt, V.: Chu spaces and their interpretation as concurrent objects. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 392–405. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0015256

    Chapter  Google Scholar 

  27. Winskel G.: Events in computation. Ph.D. thesis, University of Edinburgh (1980)

    Google Scholar 

  28. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-17906-2_31

    Chapter  Google Scholar 

  29. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 364–397. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0013026

    Chapter  Google Scholar 

  30. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of Logic in Computer Science, vol. 4 (1995)

    Google Scholar 

  31. Winskel, G.: Distributed probabilistic and quantum strategies. Electron. Notes Theor. Comput. Sci. 298, 403–425 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Virbitskaite .

Editor information

Editors and Affiliations

A Proofs

A Proofs

This appendix contains the proofs of the results obtained for \(\mathcal {E}\in {\mathbb {E}^{g}_L}\) and \(\star =mset\). All the proofs can be found at http://www.iis.nsk.su/virb/BGV-proofsketches-2018.pdf.

Proof of Lemma 4

  1. (i)

    Take an arbitrary \(A\in Con\). This implies that \(A\subseteq E\) and \(\lnot (x \ \sharp \ x')\), for all \(x,x'\in A\). Check that \(A\cap E'\in Con'\). Suppose a contrary, i.e. there is \(a,a'\in A\cap E'\) such that \(a\ \sharp '\ a'\). By the definition of \(\sharp '\), this means that \(a, a'\in A\) and \(a\ \sharp \ a'\), contradicting \(A\in Con\). So, \(A\cap E'\in Con'\). Next, take an arbitrary \(A'\in Con'\). We shall show that \(A'\in Con\). Assume a contrary, i.e. there is \(a,a'\in A'\) such that \(a\ \sharp \ a'\). Since \(A'\in Con'\), it holds that \(A'\subseteq E'\). By the definition of \(\sharp '\), we get \(a\ \sharp '\ a'\), contradicting \(A'\in Con'\). Hence, \(A'\in Con\).

  2. (ii)

    Follows from the definitions of the components of \(\mathcal {E}\setminus X\).

  3. (iii)

    Next, we show that \(X\cup X'\in Con\). As \(X\in \textit{Conf}(\mathcal{E})\) (\(X'\in \textit{Conf}(\mathcal{E}')\)), we get \(X\in Con\) (\(X'\in Con'\)). By item (i), it holds that \(X'\in Con\). Suppose a contrary, i.e. \(X\cup X'\not \in Con\). Then, we can find \(e'\in X'\) and \(e\in X\) such that \(e'\ \sharp \ e\). Since \(X'\in \textit{Conf}(\mathcal{E}')\), there are \(e'_1, \ldots , e'_m\) (\(m\ge 0\)) such that \(X' = \{e'_1, \ldots , e'_m\}\) and \(\{e'_1, \ldots , e'_i\} \vdash ' e'_{i+1}\), for all \(i<m\). W.l.o.g., assume \(e'=e'_j\) for some \(1\le j\le m\). By the definition of \(\vdash '\), there is \(W'\subseteq \{e'_1, \ldots , e'_{j-1}\}\) such that \((W',e'_j)\in \ \vdash '_{min}\). Then, due to the definition of \(\vdash '_{min}\), there is \((W,e'_j)\in \ \vdash _{min}\) such that \(W' = W\cap E'\) and \(\{e'_j\}\cup X \in Con\), contradicting \(e'\ \sharp \ e\in X\).

Check that \({W}\cup X\cup X'\in Con\) iff \((W\setminus X)\cup X'\in Con'\) and \(W\cup X\in Con\). Assume \({W}\cup X\cup X'\in Con\). Clearly, it holds that \(W\cup X\in Con\). Next, it easy to see that \((W\cup X\cup X')\cap E'\in Con'\), due to item (i). This means \(({W\setminus X})\cup X'\in Con'\). Conversely, suppose \((W\setminus X)\cup X'\in Con'\) and \(W\cup X\in Con\). By item (i), we have \((W\setminus X)\cup X'\in Con\). Moreover, we know that \(X\cup X'\in Con\). Hence, it holds that \({W}\cup X\cup X'\in Con\).    \(\Box \)

Proof of Proposition 1

  1. (i)

    Let \(\mathcal{E}'=\mathcal{E}\setminus X\) with \(X\in Conf_\star (\mathcal{E})\) and \(\mathcal{E}''=\mathcal{E}'\setminus X'\) with \(X'\in Conf_\star (\mathcal{E}')\).

Since \(X\in Conf_\star (\mathcal{E})\) (\(X'\in Conf_\star (\mathcal{E}')\)), X (\(X'\)) is a finite, conflict-free, and secured subset of E (\(E'\)) and \(\emptyset \rightarrow _\star ^*X\) in \(\mathcal{E}\) (\(\emptyset \rightarrow _\star ^*X'\) in \(\mathcal{E}'\)). Obviously, \(X\cup X'\) is a finite subset of E, by the definition of \(E'\). Next, due to Lemma 4(iii), we have that \(X\cup X'\in Con\). Further, we check that \(X\cup X'\) is secured. As X is secured, there is a sequence \(e_1 \ldots e_n\ (n\ge 0)\) such that \(X=\{e_1, \ldots , e_n\}\), and \(\{e_1, \ldots , e_i\}\vdash e_{i+1}\), for all \(i<n\). Moreover, there exists a sequence \(e'_1 \ldots e'_m\ (m\ge 0)\) such that \(X'=\{e'_1, \ldots , e'_m\}\), and \(\{e'_1, \ldots , e'_j\}\vdash ' e'_{j+1}\), for all \(j<m\), because \(X'\) is secured in \(\mathcal{E}'\). Consider a sequence \(e_1 \ldots e_n\,e_{n+1}=e'_1 \ldots e_{n+m}=e'_m\). Clearly, \(\{e_1, \ldots , e_n,\,e_{n+1}, \ldots , e_{n+m}\}=X\cup X'\). Check that \(\{e_1, \ldots , e_l\}\vdash e_{l+1}\), for all \(l<n+m\). We know that \(\{e_1, \ldots , e_l\}\vdash e_{l+1}\), for all \(l<n\). Consider the case when \(l=n\). Obviously, \(\emptyset \vdash ' e_{n+1}=e'_1\), i.e. \(\emptyset \vdash '_{min} e_{n+1}=e'_1\). This means that there is \((W,e'_1)\in \ \vdash _{min}\) such that \(\emptyset = W\cap E'\) and \(\{e'_1\}\cup X \in Con\). Since \(W\subseteq E'\cup X\) and \(W\cap E'=\emptyset \), we get \(W\subseteq X\in Con\). Then, \(X\vdash e_{n+1}\), i.e. \(\{e_1, \ldots , e_n\}\vdash e_{n+1}\). Finally, we verify the case when \(n+1\le l<n+m\). We know that \(\{e'_1, \ldots , e'_{l-n}\}\vdash ' e'_{l-n+1}\). Then, \(W'\vdash '_{min} e'_{l-n+1}\), for some \(W'\subseteq \{e'_1, \ldots , e'_{l-n}\}\). This means that there is \((W,e'_{l-n+1})\in \ \vdash _{min}\) such that \(W' = W\cap E', \{e'_{l-n+1}\}\cup X \in Con\), and \(W'\cup X \in Con\). So, \(W'\cup X\vdash e'_{l-n+1}\). Since \(X\cup X'\in Con\) and \(W'\subseteq \{e'_1, \ldots , e'_{l-n}\} \subseteq X'\), \(X\cup \{e'_1, \ldots , e'_{l-n}\}\in Con\). Then, \(\{e_1, \ldots , e_n,\,e_{n+1}, \ldots , e_{l}\}\vdash e_{l+1}\). Hence, \(X\cup X'\) is a configuration of \(\mathcal{E}\). Since \(\emptyset \subseteq X\cup X'\) we get \(\emptyset \rightarrow _\star X\cup X'\) in \(\mathcal{E}\). Thus, \(X\cup X'\in Conf_\star (\mathcal{E})\).

Set \(\widetilde{\mathcal{E}} = \mathcal{E} \setminus (X \cup X')\). Check that \(\mathcal{E}'' = \widetilde{\mathcal{E}}\). By definition, \(\widetilde{E} = E\setminus (X\cup X')=(E\setminus X)\setminus X'=E'\setminus X'=E''\). Then, again by definition, \(\sharp ''=\sharp ' \cap (E'' \times E'') = (\sharp \cap (E' \times E')) \cap (E''\times E'') = \sharp \cap (E'' \times E'') = \sharp \bigcap \widetilde{E} \times \widetilde{E}=\widetilde{\sharp }\), and \(l''=l \mid _{E''}=l\mid _{\widetilde{E}}=\widetilde{l}\). Using that \(\widetilde{E} = E''\) and \(\widetilde{\sharp } = \sharp ''\), it is straightforward to verify that \(\widetilde{Con}=Con''\). It remains to show that \(\widetilde{\vdash }=\ \vdash ''\). We know that \(\widetilde{\vdash }_{min}=\{(\widetilde{W},e)\}\mid \) \(\exists (W,e)\in \ \vdash _{min}\) s.t. \(e\in \widetilde{E}, \widetilde{W}=W\cap \widetilde{E}\), \(\{e\}\cup (X\cup X')\in Con\), \(\widetilde{W}\cup (X\cup X')\in Con\}\). On the other hand, we have that \(\vdash ''_{min}=\{(W'',e)\mid \) \(\exists (W',e)\in \ \vdash '_{min}\) s.t. \(e\in E'', W''=W'\cap E'', \{e\}\cup X'\in Con', W''\cup X'\in Con'\}\). Due to the definition of \(\vdash '_{min}\), \(\vdash ''_{min}=\{(W'',e)\mid \) \(\exists (W,e)\in \ \vdash _{min}\) s.t. \(e\in E'\cap E'', W''=(W'=W\cap E')\cap E'', \{e\}\cup X\in Con\), \(\{e\}\cup X'\in Con'\), \(W''\cup X'\in Con'\), \(W'\cup X\in Con\}=\{(W'',e)\mid \) \(\exists (W,e)\in \ \vdash _{min}\) s.t. \(e\in E'', W''=W\cap E'', \{e\}\cup X\in Con, \{e\}\cup X'\in Con'\), \(W''\cup X'\in Con'\), \(W'\cup X\in Con\}\). As \(\widetilde{W} = W\setminus (X\cup X'), \widetilde{W}\cup X\cup X' = W\cup X \cup X'\), as \(W' = W\setminus X, W'\cup X = W\cup X\), and as \(W''=W'\setminus X', W''\cup X'=W'\cup X'=(W\setminus X)\cup X'\). Hence, \(\widetilde{W}\cup X\cup X'\in Con\) iff \(W''\cup X'\in Con'\) and \(W'\cup X\in Con\), due to Lemma 4(iii). Notice that \(e\not \in X \cup X'\), because \(e\in E''\). We also have that \(\{e\}\cup X\cup X'\in Con\) iff \(\{e\}\cup X'\in Con'\) and \(\{e\}\cup X\in Con\), again by Lemma 4(iii). Due to \(\widetilde{E} = E''\), we get that \(\widetilde{\vdash }_{min}=\ \vdash ''_{min}\). Moreover, it holds that \(\widetilde{\vdash }=\{(\widetilde{W},e)\}\mid \widetilde{W}\in \widetilde{Con}\), \(\exists (W,e)\in \ \widetilde{\vdash }_{min}\) s.t. \(W\subseteq \widetilde{W}\}=\{(W'',e)\}\mid W''\in Con''\), \(\exists (W,e)\in \ \vdash ''_{min}\) s.t. \(W\subseteq W''\}=\ \vdash ''\), because \(\widetilde{Con}=Con''\) and \(\widetilde{\vdash }_{min}=\ \vdash ''_{min}\).

  1. (ii)

    Assume \(X,X''\in \textit{Conf}_\star (\mathcal{E})\) and \(X{\mathop {\rightarrow }\limits ^{}}_\star X''\). Since \(X''\in Conf_\star (\mathcal{E})\), we have \(X''\in \textit{Conf}(\mathcal{E})\), i.e. \(X''\) is finite, conflict-free (i.e., \(X''\in Con\)), and secured (i.e., there exists a sequence \(t=e''_1\ldots e''_n\) of events from \(E\ (n\ge 0)\) such that \(X''=\{e''_1, \ldots , e''_n\}\), and \(\{e''_1, \ldots , e''_i\}\vdash e''_{i+1}\), for all \(i<n\). Using the sequence t and the fact that \(X{\mathop {\rightarrow }\limits ^{}}_\star X''\), i.e. \(X\subseteq X''\), construct a sequence \(t'\) as follows: \(t'_0 = \epsilon \), \(t'_{i+1} = t'_i\,e''_{i+1}\), if \(e''_{i+1}\not \in X\), and \(t'_{i+1} = t'_i\), otherwise. W.l.o.g. assume \(t'= e'_1\ldots e'_k\ (k\ge 0)\) and \(X'=\{e'_1,\ldots ,e'_k\}\). Clearly, \(X'\) is a finite subset of \(E'\). As \(X''\in Con\), then \(X''\setminus X=X'=X''\cap E'\in Con'\), by Lemma 4(i). We shall show that \(\{e'_1, \ldots , e'_{j}\}\vdash ' e'_{j+1}\), for all \(j<k\). Take an arbitrary \(j<k\). Clearly, \(e'_1, \ldots , e'_{j},e'_{j+1}\in X'\subseteq E'\) and \(\{e'_1,\ \ldots ,\ e'_{j}\}\in Con'\). W.l.o.g., assume \(e'_{j+1} = e''_{i+1}\), for some \(e''_{i+1}\in X''\). As \(X''\in \textit{Conf}(\mathcal{E})\), we get that \(W''=\{e''_1, \ldots , e''_i\}\vdash e''_{i+1}\). Then, \(W\vdash _{min}e''_{i+1}\), for some \(W\subseteq W''\). Obviously, \(W''\cap E'= \{e'_1,\ \ldots ,\ e'_{j}\}\). Set \(W'=W\cap E'\). Clearly, \(W'\cup \{e''_{i+1}\}\cup X \subseteq X''\). As \(X''\in Con\), we get that \(W'\cup X \in Con\) and \(\{e''_{i+1}\}\cup X \in Con\). So, \(W'\vdash '_{min} e'_{j+1}\). Since \(W'\subseteq \{e'_1, \ldots , e'_{j}\}\in Con'\), \(\{e'_1, \ldots , e'_{j}\}\vdash ' e'_{j+1}\). This implies, \(X'\) is a configuration of \(\mathcal{E}\setminus X\). Since \(\emptyset \subseteq X'\), we have \(\emptyset \rightarrow _\star X' = X''\setminus X\) in \(\mathcal{E}\setminus X\). Hence, \(X'\in Conf_\star (\mathcal{E}\setminus X)\).    \(\Box \)

Proof of Proposition 2

  1. (i)

    Take an arbitrary \(X\in Conf_\star (\mathcal {E})\). This means that \(X_0=\emptyset \rightarrow _\star X_1\ldots X_{n-1}\rightarrow _\star X_n = X\) (\(n\ge )\)) in \({\mathcal {E}}\). Then, we get that \(X_i\in Conf_\star (\mathcal {E})\ (0\le i\le n)\) and \(X_{i-1} \subseteq X_i\ (1\le i\le n)\). We shall proceed by induction on n.

  • \(n=0\). \(\mathcal {E}\setminus X_0=\mathcal {E}\in Reach_\star (\mathcal {E})\).

  • \(n=1\). By the induction hypothesis, \(\mathcal {E}\setminus X_0\in Reach_\star (\mathcal {E})\). Check that \(\mathcal {E}\setminus X_{0}{\mathop {\rightharpoonup }\limits ^{p_1}}_\star \mathcal {E}\setminus X_1\). Since \(X_{0}\rightarrow _\star X_1\) in \(\mathcal {E}\), it holds \(X_{1}\setminus X_{0}\in Conf_\star (\mathcal {E}\setminus X_{0})\) and \(\emptyset \rightarrow _\star X_1\setminus X_{0} = A_1\) in \(\mathcal {E}\setminus X_{0}\), by Proposition 1(ii). Next, due to Proposition 1(i), we have \((\mathcal {E}\setminus X_{0}) \setminus A_1=\mathcal {E}\setminus (X_{0}\cup (X_1\setminus X_{0}))= \mathcal {E}\setminus X_{1}\). This implies that \(\mathcal {E}\setminus X_{0}\ {\mathop {\rightharpoonup }\limits ^{p_1}}_\star \) \(\mathcal {E}\setminus X_{1}\), where \(p_1=l_\star (A_1)\). So, \(\mathcal {E}\setminus X_{1}\in Reach_\star (\mathcal {E})\).

  • \(n>1\). By the induction hypothesis, \(\mathcal {E}\setminus X_{n-2}\ {\mathop {\rightharpoonup }\limits ^{p_{n-1}}}_\star \) \(\mathcal {E}\setminus X_{n-1}\). Reasoning as in the previous item, we get that \(\mathcal {E}\setminus X_{n-1}\) \({\mathop {\rightharpoonup }\limits ^{p_n}}_\star \) \(\mathcal {E}\setminus X_{n}\), where \(p_n=l_\star (A_n)\). Thus, \(\mathcal {E}\setminus (X_{n}=X)\in Reach_\star (\mathcal {E})\).

  1. (ii)

    Take an arbitrary \(\mathcal {E}'\in Reach_\star (\mathcal {E})\). This means that \(\mathcal {E}=\mathcal {E}_0\) \({\mathop {\rightharpoonup }\limits ^{p_1}}_\star \) \(\mathcal {E}_1 \ldots \mathcal {E}_{n-1}\) \({\mathop {\rightharpoonup }\limits ^{p_n}}_\star \ \mathcal {E}_n=\mathcal {E}'\) (\(n\ge 0\)). By the definition of \({\mathop {\rightharpoonup }\limits ^{p_{i+1}}}_\star \), it holds that \(\mathcal {E}_{i+1}=\mathcal {E}_{i}\setminus X_{i+1}\), for some \(X_{i+1}\in Conf_\star (\mathcal {E}_{i})\) such that \(\emptyset \rightarrow _\star X_{i+1}\) in \(\mathcal {E}_i\) and \(p_{i+1}=l_\star (X_{i+1})\) (\(i<n\)). Verify that \(Y_{i+1} = \mathop {\bigcup }\limits _{j=1}^{i+1} X_{j}\in Conf_\star (\mathcal {E})\) and \(\mathcal {E}_{i+1}=\mathcal {E}\setminus Y_{i+1}\), for all \(i<n\).

We shall proceed by induction on n.

  • \(n=0\). Obvious.

  • \(n=1\). Then, \(Y_1=X_1\in Conf_\star (\mathcal {E})\) and \(\mathcal {E}_1=\mathcal {E}_0\setminus X_{1}=\mathcal {E}\setminus Y_{1}\).

  • \(n>1\). By the induction hypothesis, \(Y_{n-1} = \mathop {\bigcup }\limits _{j=1}^{n-1} X_{j}\in Conf_\star (\mathcal {E})\) and \(\mathcal {E}_{n-1}=\mathcal {E}\setminus Y_{n-1}\). Check that \(Y_{n}=\mathop {\bigcup }\limits _{j=1}^{n} X_{j}\in Conf_\star (\mathcal {E})\) and \(\mathcal {E}_{n}=\mathcal {E}\setminus Y_{n}\). As \(\mathcal {E}_{n}=\mathcal {E}_{n-1}\setminus X_{n}\), it holds that \(\mathcal {E}_{n}=(\mathcal {E}\setminus Y_{n-1})\setminus X_{n}\). According to Proposition 1(i), we have that \(Y_{n-1}\cup X_{n}\in Conf_\star ({\mathcal E})\) and \(\mathcal {E}_{n}=\mathcal {E}\setminus (Y_{n-1}\cup X_{n})=\mathcal {E}\setminus Y_{n}\).

Thus, \(\mathcal {E}'=\mathcal {E}\setminus Y_{n}\).

  1. (iii)

    It follows from the definitions of the transition relations and Proposition 1(i),(ii).

  2. (iv)

    Due to item (ii), there is \(X'\in Conf_\star (\mathcal {E})\) such that \(\mathcal {E}'=\mathcal {E}\setminus X'\). According to the definition of \({\mathop {\rightharpoonup }\limits ^{p}}_\star \), there is \(\widetilde{X}'\in Conf_\star (\mathcal {E}')\) such that \(\mathcal {E}''=\mathcal {E}'\setminus \widetilde{X}'\), \(\emptyset \rightarrow _\star \widetilde{X}'\) in \(\mathcal {E}'\), and \(p=l_\star (\widetilde{X}')\). Then, \(X''=X'\cup \widetilde{X}'\in Conf_\star (\mathcal {E})\) and \(\mathcal {E}''=\mathcal {E}\setminus X''\), by Proposition 1(i). Clearly, \(X',X''\in Conf(\mathcal {E})\) and \(X'\subseteq X'\cup \widetilde{X}' = X''\). Hence, \(X'\rightarrow _\star X''\) in \(\mathcal {E}\). Obviously, \(l_\star (X''\setminus X')=p\). Thus, \(X'{\mathop {\rightharpoondown }\limits ^{p}}_\star X''\) in \(\mathcal {E}\).    \(\Box \)

Proof of Theorem 1

Define a mapping \(g : Conf_\star ({\mathcal E})\rightarrow Reach_\star ({\mathcal E})\) as follows: \(g(X) = \mathcal{E}\setminus X\), for all \(X\in Conf_\star {\mathcal E})\). Clearly, \(g(\emptyset )=\mathcal{E}\). By the definition of \(\mathcal{E}\setminus X\) and Proposition 2(i), g is well-defined. Check that g is a bijective mapping.

Suppose that \(g(X)=g(X')\), for some \(X,X'\in Conf_\star ({\mathcal E})\). This means that \({\mathcal E}\setminus X = {\mathcal E}\setminus X'\). By the definition of \({\mathcal E}\setminus X\) and \({\mathcal E}\setminus X'\), we get that \(E\setminus X = E\setminus X'\). Since \(X,X'\subseteq E\), we have that \(X=X'\). Thus, g is an injective mapping.

Take an arbitrary \(\mathcal{E}'\in Reach_\star ({\mathcal E})\). Due to Proposition 2(ii), we get that \(\mathcal{E}' = \mathcal{E}\setminus X\), for some \(X\in Conf_\star ({\mathcal E})\). So, g is a surjective mapping.

We finally show that \(X {\mathop {\rightharpoondown }\limits ^{p}}_\star X'\) in \(\textit{TC}_\star (\mathcal{E})\) iff \(g(X) {\mathop {\rightharpoonup }\limits ^{p}}_\star g(X')\) in \(\textit{TR}_\star (\mathcal{E})\). It follows from Proposition 2(iii) and (iv) and the fact that g is a bijective mapping.

Thus, g is indeed an isomorphism.    \(\Box \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Best, E., Gribovskaya, N., Virbitskaite, I. (2018). From Event-Oriented Models to Transition Systems. In: Khomenko, V., Roux, O. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2018. Lecture Notes in Computer Science(), vol 10877. Springer, Cham. https://doi.org/10.1007/978-3-319-91268-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91268-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91267-7

  • Online ISBN: 978-3-319-91268-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics