Skip to main content

Image Completion with Smooth Nonnegative Matrix Factorization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Abstract

Nonnegative matrix factorization is an unsupervised learning method for part-based feature extraction and dimensionality reduction of nonnegative data with a variety of models, algorithms, structures, and applications. Smooth nonnegative matrix factorization assumes the estimated latent factors are locally smooth, and the smoothness is enforced by the underlying model or the algorithm. In this study, we extended one of the algorithms for this kind of factorization to an image completion problem. It is the B-splines ADMM-NMF (Nonnegative Matrix Factorization with Alternating Direction Method of Multipliers) that enforces smooth feature vectors by assuming they are represented by a linear combination of smooth basis functions, i.e. B-splines. The numerical experiments performed on several incomplete images show that the proposed method outperforms the other algorithms in terms of the quality of recovered images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.plgrid.pl/en.

  2. 2.

    https://www.wcss.pl/en/.

References

  1. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  2. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  3. Zhang, H., He, W., Zhang, L., Shen, H., Yuan, Q.: Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 52(8), 4729–4743 (2014)

    Article  Google Scholar 

  4. Miao, L., Qi, H.: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 45(3), 765–777 (2007)

    Article  Google Scholar 

  5. Jia, S., Qian, Y.: Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 47(1), 161–173 (2009)

    Article  Google Scholar 

  6. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix factorization. In: SIGIR 2003: Proceedings of 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 267–273. ACM Press, New York (2003)

    Google Scholar 

  7. Pauca, V.P., Shahnaz, F., Berry, M.W., Plemmons, R.J.: Text mining using non-negative matrix factorizations. In: Proceedings of SIAM Interernational Conferene on Data Mining, Orlando, FL, pp. 452–456 (2004)

    Google Scholar 

  8. Kersting, K., Wahabzada, M., Thurau, C., Bauckhage, C.: Hierarchical convex NMF for clustering massive data. In: Proceedings of 2nd Asian Conference on Machine Learning, ACML, Tokyo, Japan, pp. 253–268 (2010)

    Google Scholar 

  9. Virtanen, T.: Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans. Audio Speech Lang. Process. 15(3), 1066–1074 (2007)

    Article  Google Scholar 

  10. Zdunek, R., Cichocki, A.: Blind image separation using nonnegative matrix factorization with Gibbs smoothing. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007. LNCS, vol. 4985, pp. 519–528. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69162-4_54

    Chapter  Google Scholar 

  11. Févotte, C., Bertin, N., Durrieu, J.L.: Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis. Neural Comput. 21(3), 793–830 (2009)

    Article  Google Scholar 

  12. Zdunek, R.: Approximation of feature vectors in nonnegative matrix factorization with Gaussian radial basis functions. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7663, pp. 616–623. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34475-6_74

    Chapter  Google Scholar 

  13. Zdunek, R., Cichocki, A., Yokota, T.: B-spline smoothing of feature vectors in nonnegative matrix factorization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 72–81. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_7

    Chapter  Google Scholar 

  14. Zdunek, R.: Alternating direction method for approximating smooth feature vectors in nonnegative matrix factorization. In: IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2014, Reims, France, 21–24 September 2014, pp. 1–6 (2014)

    Google Scholar 

  15. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. In: Foundations and Trends in Machine Learning. vol. 3, pp. 1–122. NOW Publishers (2011)

    Google Scholar 

  16. Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.G.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7, 1588–1623 (2014)

    Article  MathSciNet  Google Scholar 

  17. Hajinezhad, D., Chang, T., Wang, X., Shi, Q., Hong, M.: Nonnegative matrix factorization using ADMM: algorithm and convergence analysis. In: ICASSP, pp. 4742–4746. IEEE (2016)

    Google Scholar 

  18. Sun, D.L., Fevotte, C.: Alternating direction method of multipliers for non-negative matrix factorization with the beta-divergence. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy (2014)

    Google Scholar 

  19. Esser, E., Möller, M., Osher, S., Sapiro, G., Xin, J.: A convex model for nonnegative matrix factorization and dimensionality reduction on physical space. IEEE Trans. Image Process. 21(7), 3239–3252 (2012)

    Article  MathSciNet  Google Scholar 

  20. Xu, Y.: Alternating proximal gradient method for nonnegative matrix factorization. CoRR abs/1112.5407 (2011)

    Google Scholar 

  21. Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. Front. Math. China 7(2), 365–384 (2012)

    Article  MathSciNet  Google Scholar 

  22. Sun, D.L., Mazumder, R.: Non-negative matrix completion for bandwidth extension: a convex optimization approach. In: Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2013), Southampton, UK (2013)

    Google Scholar 

  23. Yuan, X., Yang, J.F.: Sparse and low rank matrix decomposition via alternating direction method. Pac. J. Optim. 9(1), 167–180 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Yokota, T., Zhao, Q., Cichocki, A.: Smooth PARAFAC decomposition for tensor completion. IEEE Trans. Sig. Process. 64(20), 5423–5436 (2016)

    Article  MathSciNet  Google Scholar 

  25. Sadowski, T., Zdunek, R.: Modified HALS algorithm for image completion and recommendation system. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2017. AISC, vol. 656, pp. 17–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67229-8_2

    Chapter  Google Scholar 

  26. Guo, X., Ma, Y.: Generalized tensor total variation minimization for visual data recovery. In: Proceedigngs of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  27. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  28. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  Google Scholar 

  29. Chugh, T., Cao, K., Zhou, J., Tabassi, E., Jain, A.K.: Latent fingerprint value prediction: crowd-based learning. IEEE Trans. Inf. Forensics Secur. 13(1), 20–34 (2018)

    Article  Google Scholar 

  30. Pei, S.C., Tsai, Y.T., Lee, C.Y.: Removing rain and snow in a single image using saturation and visibility features. In: IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–6 (2014)

    Google Scholar 

  31. Barnum, P., Kanade, T., Narasimhan, S.G.: Spatio-temporal frequency analysis for removing rain and snow from videos. In: Workshop on Photometric Analysis For Computer Vision (PACV), in Conjunction with ICCV, Pittsburgh, PA (2007)

    Google Scholar 

  32. Demirkaya, O., Asyali, M., Sahoo, P.: Image Processing with MATLAB: Applications in Medicine and Biology, 2nd edn. Taylor and Francis, Oxford (2015)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the grant 2015/17/B/ST6/01865 funded by National Science Center (NCN) in Poland. Calculations were performed at the Wroclaw Center for Networking and Supercomputing under grant no. 127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Sadowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadowski, T., Zdunek, R. (2018). Image Completion with Smooth Nonnegative Matrix Factorization. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics