Skip to main content

Outliers Detection in Regressions by Nonparametric Parzen Kernel Estimation

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Included in the following conference series:

  • 1904 Accesses

Abstract

A certain observation which is unusual or different from all other ones is called the outlier or anomaly. Appropriate evaluation of data is a crucial problem in modelling of the real objects or phenomena. Actually investigated problems often are based on data mass-produced by computer systems, without careful inspection or screening. The great amount of generated and processed information (e.g. so-called Big-Data) cause that possible outliers often go unnoticed and the result is that they can be masked. However, in regression, this situation can be more complicated. The identification and evaluation of the extremely atypical measurements in observations, for instance in some areas of medicine, geology, particularly in seismology (earthquakes), is precisely the outliers that are the subjects of interest. In this paper, a nonparametric procedure based on Parzen kernel for estimation of unknown function is applied. Evaluation of which measurements in input data-set could be recognized as outliers and possibly should be removed has been performed using the Cook’s Distance formula. Anomaly detection is still an important problem to be researched within diverse areas and application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, R.: Modern Methods for Robust Regression. Quantitative Applications in the Social Sciences, vol. 152. Sage, Thousand Oaks (2008)

    Book  Google Scholar 

  2. Beg, I., Rashid, T.: Modelling uncertainties in multi-criteria decision making using distance measure and topsis for hesitant fuzzy sets. J. Artif. Intell. Soft Comput. Res. 7(2), 103–109 (2017)

    Article  Google Scholar 

  3. Bollen K.A., Jackman R.W.: Regression diagnostics: an expository treatment of outliers and influential cases. In: Fox, J., Scott, L.J. (eds.) Modern Methods of Data Analysis, pp. 257–291. Sage, Newbury Park (1990). ISBN 0-8039-3366-5

    Google Scholar 

  4. Cook, R.D.: Detection of influential observations in linear regression. Technometrics 19, 15–18 (1977). American Statistical Association

    MathSciNet  MATH  Google Scholar 

  5. Cook, R.D.: Residuals and Influence in Regression. Weisberg, Sanford, New York (1982)

    Google Scholar 

  6. Chandola, V., Banerjee A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), Article 15, 58 p. Chapman and Hall (2009). https://doi.org/10.1145/1541880.1541882 ISBN 0-412-24280-X

    Article  Google Scholar 

  7. Cpalka, K., Rebrova, O., Nowicki, R., et al.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)

    Article  Google Scholar 

  8. Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)

    Google Scholar 

  9. Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz, R. (eds.): Biocybernetics and Biomedical Engineering 2000. Neural Networks, vol. 6. Akademicka Oficyna Wydawnicza, EXIT, Warsaw (2000). (in Polish)

    Google Scholar 

  10. Galkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. In: Proceedings of the IEEE, vol. 73, pp. 942–943, New York (1985)

    Google Scholar 

  11. Galkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions. IEEE Trans. Autom. Control AC–31, 785–787 (1986)

    Article  Google Scholar 

  12. Galkowski, T.: Nonparametric estimation of boundary values of functions. Arch. Control Sci. 3(1–2), 85–93 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Gałkowski, T.: Kernel estimation of regression functions in the boundary regions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 158–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_15

    Chapter  Google Scholar 

  14. Galkowski, T., Pawlak, M.: Nonparametric extension of regression functions outside domain. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 518–530. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_44

    Chapter  Google Scholar 

  15. Galkowski, T., Pawlak, M.: Orthogonal series estimation of regression functions in nonstationary conditions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 427–435. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_39

    Chapter  Google Scholar 

  16. Galkowski, T., Pawlak, M.: Nonparametric estimation of edge values of regression functions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 49–59. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_5

    Chapter  Google Scholar 

  17. Galkowski, T., Pawlak, M.: The novel method of the estimation of the Fourier transform based on noisy measurements. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 52–61. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_6

    Chapter  Google Scholar 

  18. Gasser, T., Müller, H.-G.: Kernel estimation of regression functions. In: Gasser, T., Rosenblatt, M. (eds.) Smoothing Techniques for Curve Estimation. LNM, vol. 757, pp. 23–68. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0098489

    Chapter  Google Scholar 

  19. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: Components of a new research resource for complex physiologic signals, PhysioBank, PhysioToolkit, and PhysioNet. Circulation 101(23), 215–220 (2000)

    Article  Google Scholar 

  20. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric pattern recognition procedures. Proc. IEEE 69(4), 482–483 (1981)

    Article  Google Scholar 

  21. Grycuk, R., Gabryel, M., Nowicki, R., Scherer, R.: Content-based image retrieval optimization by differential evolution. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 86–93 (2016)

    Google Scholar 

  22. Grycuk, R., Scherer, R., Gabryel, M.: New image descriptor from edge detector and blob extractor. J. Appl. Math. Comput. Mech. 14(4), 31–39 (2015)

    Article  Google Scholar 

  23. Korytkowski, M., Rutkowski, L., Scherer, R.: On combining backpropagation with boosting. In: International Joint Conference on Neural Networks, pp. 1274–1277 (2006)

    Google Scholar 

  24. Zhang, L., Lin, J., Karim, R.: Adaptive kernel density-based anomaly detection for nonlinear systems. Knowl.-Based Syst. 139, 50–63 (2018)

    Article  Google Scholar 

  25. Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017)

    Article  Google Scholar 

  26. Parzen, E.: On estimation of a probability density function and mode. Anal. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  27. Rotar, C., Iantovics, L.B.: Directed evolution - a new metaheuristc for optimization. J. Artif. Intell. Soft Comput. Res. 7(3), 183–200 (2017)

    Article  Google Scholar 

  28. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  29. Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Trans. Circuits Syst. 33(8), 812–818 (1986)

    Article  Google Scholar 

  30. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple Fourier series. Pattern Recognit. Lett. 8, 213–216 (1988)

    Article  Google Scholar 

  31. Rutkowski, L.: Non-parametric learning algorithms in the time-varying environments. Sig. Process. 18(2), 129–137 (1989)

    Article  Google Scholar 

  32. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Trans. Sig. Process. 41(10), 3062–3065 (1993)

    Article  Google Scholar 

  33. Rutkowski, L., Cpalka, K.: Compromise approach to neuro-fuzzy systems. In: Intelligent Technologies-Theory and Applications, 2nd Euro-International Symposium on Computation Intelligence, Kosice, Slovakia. Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 85–90 (2002)

    Google Scholar 

  34. Starczewski, A.: A new validity index for crisp clusters. Pattern Anal. App. 20(3), 687–700 (2017)

    Article  MathSciNet  Google Scholar 

  35. Starczewski, A., Krzyżak, A.: Improvement of the validity index for determination of an appropriate data partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 159–170. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_16

    Chapter  Google Scholar 

  36. Tezuka, T., Claramunt, C.: Kernel analysis for estimating the connectivity of a network with event sequences. J. Artif. Intell. Soft Comput. Res. 7(1), 17–31 (2017)

    Article  Google Scholar 

  37. Yan, P.: Mapreduce and semantics enabled event detection using social media. J. Artif. Intell. Soft Comput. Res. 7(3), 201–213 (2017)

    Article  Google Scholar 

  38. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 217–232. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Galkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galkowski, T., Cader, A. (2018). Outliers Detection in Regressions by Nonparametric Parzen Kernel Estimation. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics