Skip to main content

On the Use of Principal Component Analysis and Particle Swarm Optimization in Protein Tertiary Structure Prediction

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Abstract

We discuss applicability of Principal Component Analysis and Particle Swarm Optimization in protein tertiary structure prediction. The proposed algorithm is based on establishing a low-dimensional space where the sampling (and optimization) is carried out via Particle Swarm Optimizer (PSO). The reduced space is found via Principal Component Analysis (PCA) performed for a set of previously found low-energy protein models. A high frequency term is added into this expansion by projecting the best decoy into the PCA basis set and calculating the residual model. Our results show that PSO improves the energy of the best decoy used in the PCA considering an adequate number of PCA terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Y.: Progress and challenges in protein structure prediction. Curr. Opin. Struct. Biol. 18, 342–348 (2008)

    Article  Google Scholar 

  2. Bonneau, R., Strauss, C.E., Rohl, C.A., Chivian, D., Bradley, P., Malmstrom, L., Robertson, T., Baker, D.: De novo prediction of three-dimensional structures for major protein families. J. Mol. Biol. 322, 65–78 (2002)

    Article  Google Scholar 

  3. Bradley, P., Chivian, D., Meiler, J., Misura, K., Rohl, C., Schief, W.W.W., Schueler-Furman, O., Murphy, P., Schonbrun, J., Rosetta predictions in: CASP5: successes, failures, and prospects for complete automation. Proteins 53, 457–468 (2003)

    Article  Google Scholar 

  4. Chivian, D., Kim, D.E., Malmstrom, L., Bradley, P., Robertson, T., Murphy, P., Strauss, C.E., Bonneau, R., Rohl, C.A., Baker, D.: Automated prediction of CASP-5 structures using the Robetta server. Proteins 53, 524–533 (2003)

    Article  Google Scholar 

  5. Sen, T.Z., Feng, Y., Garcia, J.V., Kloczkowski, A., Jernigan, R.L.: The extent of cooperativity of protein motions observed with elastic network models is similar for atomic and coarser-grained models. J. Chem. Theory Comput. 2, 696–704 (2006)

    Article  Google Scholar 

  6. Gniewek, P., Kolinski, A., Jernigan, R.L., Kloczkowski, A.: Elastic network normal modes provide a basis for protein structure refinement. J. Chem. Phys. 136, 195101 (2012)

    Article  Google Scholar 

  7. Fernández-Martínez, J.L.: Model reduction and uncertainty analysis in inverse problems. Lead. Edge 34, 1006–1016 (2015)

    Article  Google Scholar 

  8. Price, S.L.: From crystal structure prediction to polymorph prediction: interpreting the crystal energy landscape. Phys. Chem. Chem. Phys. 10, 1996–2009 (2008)

    Article  Google Scholar 

  9. Fernández-Martínez, J.L., et al.: On the topography of the cost functional in linear and nonlinear inverse problems. Geophysics 77, W1–W15 (2012)

    Article  Google Scholar 

  10. Fernández-Martínez, J.L., García-Gonzale, E.: Stochastic stability analysis of the linear continuous and discrete PSO models. Trans. Evol. Comp. 15, 405–423 (2011)

    Article  Google Scholar 

  11. Fernández-Martínez, J.L., García-Gonzalo, E.: Stochastic stability and numerical analysis of two novel algorithms of the PSO family: PP-PSO and RR-PSO. Int. J. Artif. Intell. Tools 21, 1240011 (2012)

    Article  Google Scholar 

  12. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002). https://doi.org/10.1007/b98835

    Book  MATH  Google Scholar 

  13. Kennedy, J., Eberhart, R.: A new optimizers using particle swarm theory. In: Proceedings of Sixth International Symposium Micromachine Human Science, vol. 1, pp. 39–46 (1995)

    Google Scholar 

  14. Fernández-Martínez, J.L., García-Gonzalo, E.: The generalized PSO a new door to PSO evolution. J. Artif. Evol. Appl. 2008, 861275 (2008)

    Google Scholar 

  15. Fernández-Martínez, J.L., García-Gonzalo, E.: The PSO family: deduction, stochastic analysis and comparison. Swarm Intell 3, 245–273 (2009)

    Article  Google Scholar 

  16. Gront, D., Kolinski, A.: BioShell – A package of tools for structural biology prediction. Bioinformatics 22, 621–622 (2006)

    Article  Google Scholar 

  17. Gront, D., Kolinski, A.: Utility library for structural bioinformatics. Bioinformatics 24, 584–585 (2008)

    Article  Google Scholar 

  18. Gniewek, P., Kolinski, A., Jernigan, R.L., Kloczkowski, A.: BioShell - threading: a versatile monte carlo package for protein threading. BMC Bioinform. 22, Article no. 22 (2014)

    Google Scholar 

  19. Aramini, J.M., et al.: Solution NMR structure of a putative Uracil DNA glycosylase from Methanosarcina acetivorans. Northeast Structural Genomics Consortium Target MvR76 (2010)

    Google Scholar 

  20. Ramelot, T.A., et al.: Solution NMR structure of the PBS linker Polypeptide domain (fragment 254-400) of Phycobilisome linker protein ApcE from Synechocystis sp. PCC 6803. Northeast Structural Genomics Consortium Target SgR209C

    Google Scholar 

  21. Eletsky, A., et al.: Solution NMR structure of the N-terminal domain of putative ATP-dependent DNA Helicase RecG-related Protein from Nitrosomonas europaea. Northeast Structural Genomics Consortium Target NeR70A (2010)

    Google Scholar 

  22. Heidebrecht, T., et al.: The structural basis for recognition of J-base containing DNA by a Novel DNA-binding domain in JBP1. Northeast Structural Genomics Consortium and others (2010)

    Google Scholar 

  23. Cuff, M.E., et al.: The lactose-specific IIB component domain structure of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) from Streptococcus pneumoniae. Midwest Center for Structural Genomics Target TIGR4 (2010)

    Google Scholar 

  24. Ramagopal, U.A. et al.: Structure of putative HAD superfamily (subfamily III A) hydrolase from Legionella pneumophila. 3N1U, New York Structural Genomics Research Center Target (2010)

    Google Scholar 

  25. Oke, M., et al.: Crystal structure of the hypothetical protein PA0856 from Pseudomonas Aeruginosa. Joint Center for Structural Genomics NP_249547.1 (2010)

    Google Scholar 

  26. Zhang, R., et al.: The crystal structure of functionally unknown protein from Neisseria Meningitidis MC58. Midwest Center for Structural Genomics Target 3NYM (2008)

    Google Scholar 

  27. Forouhar, F., et al.: Crystal structure of the N-terminal domain of DNA-binding protein SATB1 from Homo Sapiens. Northeast Structural Genomics Consortium Target HR4435B (2010)

    Google Scholar 

Download references

Acknowledgements

A. K. acknowledges financial support from NSF grant DBI 1661391 and from The Research Institute at Nationwide Children’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kloczkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Álvarez, Ó., Fernández-Martínez, J.L., Fernández-Brillet, C., Cernea, A., Fernández-Muñiz, Z., Kloczkowski, A. (2018). On the Use of Principal Component Analysis and Particle Swarm Optimization in Protein Tertiary Structure Prediction. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics