Towards Cross-Generational System Design

  • Maurizio CaonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10902)


This paper introduces the concept of cross-generational system, which indicates an information technology system designed to allow different generations interacting through centuries or, even, millennia. In the era of digital immortality and advances in artificial intelligence, there will be not only the problem of preserving and accessing data, but the emergence of digital clones will bring new challenges for technology development, interaction design and ethics. This paper provides an overview of societal transformation towards digital immortality, then describes the vision of cross-generational system design, investigates the relative future challenges and proposes the eventual socio-ethical questions.


Digital immortality Cyber world Digital curation Artificial intelligence Blockchain 


  1. 1.
    Lindley, S.E.: Shades of lightweight: supporting cross-generational communication through home messaging. Univ. Access Inf. Soc. 11(1), 31–43 (2012)CrossRefGoogle Scholar
  2. 2.
    Goldschmidt, K.: Thanatechnology: eternal digital life after death. J. Pediatr. Nurs. 28(3), 302–304 (2013)CrossRefGoogle Scholar
  3. 3.
    Gilbert, K.R., Massimi, M.: From digital divide to digital immortality: thanatechnology at the turn of the 21st century. In: Dying, Death, and Grief in an Online Universe. For Counselors and Educators, pp. 16–27 (2012)Google Scholar
  4. 4.
    Bell, G., Gray, J.: Digital immortality (2000). Accessed 09 Mar 2018
  5. 5.
    Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)CrossRefGoogle Scholar
  6. 6.
    Helbing, D., Frey, B.S., Gigerenzer, G., Hafen, E., Hagner, M., Hofstetter, Y., van den Hoven, J., Zicari, R.V., Zwitter, A.: Will democracy survive big data and artificial intelligence. In: Scientific American (2017)Google Scholar
  7. 7.
    Liu, H., et al.: A review of the smart world. Future Gener. Comput. Syst. (2017).
  8. 8.
    Ma, J.: Cybermatics for cyberization towards cyber-enabled hyper worlds. In: 2016 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), pp. 85–86. IEEE, March 2016Google Scholar
  9. 9.
    Kunii, T.L.: The potentials of cyberworlds - an axiomatic approach. In: 2004 International Conference on Cyberworlds, pp. 2–7. IEEE, November 2004Google Scholar
  10. 10.
    Ma, J., Yang, L.T., Apduhan, B.O., Huang, R., Barolli, L., Takizawa, M.: Towards a smart world and ubiquitous intelligence: a walkthrough from smart things to smart hyperspaces and UbicKids. Int. J. Pervasive Comput. Commun. 1(1), 53–68 (2005)CrossRefGoogle Scholar
  11. 11.
    Ma, J., Huang, R.: Digital explosions and digital clones. In: 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference on Autonomic and Trusted Computing and 2015 IEEE 15th International Conference on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), pp. 1133–1138. IEEE, August 2015Google Scholar
  12. 12.
    Kuny, T.: The digital dark ages? Challenges in the preservation of electronic information. Int. Preserv. News 17, 8–13 (1998)Google Scholar
  13. 13.
    Pennock, M.: Digital curation: a life-cycle approach to managing and preserving usable digital information. Libr. Arch. J. 1, January 2007.
  14. 14.
    National Research Council: Preserving Scientific Data on Our Physical Universe: A New Strategy for Archiving the Nation’s Scientific Information Resources. National Academies Press (1995)Google Scholar
  15. 15.
    Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)CrossRefGoogle Scholar
  16. 16.
    Minsky, M.: The Emotion Machine: Common Sense Thinking, Artificial Intelligence, and the Future of the Human Mind. Simon and Schuster (2007)Google Scholar
  17. 17.
    Grace, K., Salvatier, J., Dafoe, A., Zhang, B., Evans, O.: When Will AI Exceed Human Performance? Evidence from AI Experts. arXiv preprint arXiv:1705.08807 (2017)
  18. 18.
    Swan, L.S., Howard, J.: Digital immortality: Self or 0010110? Int. J. Mach. Conscious. 4(01), 245–256 (2012)CrossRefGoogle Scholar
  19. 19.
    Viceconti, M., Clapworthy, G., Jan, S.V.S.: The virtual physiological human—a European initiative for in silico human modelling. J. Physiol. Sci. 58(7), 441–446 (2008)CrossRefGoogle Scholar
  20. 20.
    Kohl, P., Noble, D.: Systems biology and the virtual physiological human. Mol. Syst. Biol. 5(1), 292 (2009)Google Scholar
  21. 21.
    Spanakis, E.G., Kafetzopoulos, D., Yang, P., Marias, K., Deng, Z., Tsiknakis, M., Sakkalis, V., Dong, F.: MyHealthAvatar: personalized and empowerment health services through internet of things technologies. In: 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), pp. 331–334. IEEE, November 2014Google Scholar
  22. 22.
    Caon, M., Carrino, S., Lafortuna, C.L., Serrano, J.C., Coulson, N.S., Sacco, M., Khaled, O.A., Mugellini, E.: Tailoring motivational mechanisms to engage teenagers in healthy life-style: a concept. In: AHFE Conference on Advances in Human Aspects of Healthcare, July 2014Google Scholar
  23. 23.
    Health EU Project: Accessed 09 Mar 2018
  24. 24.
    Byrne, D., Jones, G.J.: Towards computational autobiographical narratives through human digital memories. In: Proceedings of the 2nd ACM International Workshop on Story Representation, Mechanism and Context, pp. 9–12. ACM, October 2008Google Scholar
  25. 25.
    Lambert, J.: Digital storytelling: Capturing Lives, Creating Community. Routledge, New York (2013)Google Scholar
  26. 26.
    Holz, C., Grossman, T., Fitzmaurice, G., Agur, A.: Implanted user interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 503–512. ACM, May 2012Google Scholar
  27. 27.
    Zyskind, G., Nathan, O.: Decentralizing privacy: using blockchain to protect personal data. In: 2015 IEEE Security and Privacy Workshops (SPW), pp. 180–184. IEEE, May 2015Google Scholar
  28. 28.
    Swan, M.: Blockchain thinking: the brain as a decentralized autonomous corporation [commentary]. IEEE Technol. Soc. Mag. 34(4), 41–52 (2015)CrossRefGoogle Scholar
  29. 29.
    Markram, H.: The human brain project. Sci. Am. 306(6), 50–55 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Applied Sciences and Arts Western SwitzerlandFribourgSwitzerland

Personalised recommendations