Towards Encouraging a Healthier Lifestyle and Increased Physical Activity – An App Incorporating Persuasive Design Principles

  • Sunny Ladwa
  • Tor-Morten Grønli
  • Gheorghita GhineaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10902)


The number of young adults becoming overweight leading to obesity is on an unceasing rise. Attempts have been made to tackle this epidemic throughout the UK through varied technology platforms including video games and more recently through ubiquitous mobile applications. With a significant increase of smartphone usage, mobile applications have become the ideal platform to reach out to young adults. This paper addresses the obesity epidemic and the fundamental value of healthy living through the development of an app which encourages eating a balanced diet and particularly increasing the time spent exercising by incorporating it into an individual’s daily routine. It focuses on tackling the common barriers currently preventing individuals from increasing their level of physical activity and aims to provide a solution to the problem domain by implementing persuasive design principles, models and frameworks in an android mobile application to successfully change or modify behaviors and attitudes within young adults to increase the time spent on exercise and a healthy lifestyle.


m-Health Obesity Persuasive design 


  1. 1.
    Ahlgren, C., Hammarström, A., Sandberg, S., Lindahl, B., Olsson, T., Larsson, C., Fjellman-Wiklund, A.: Engagement in new dietary habits—obese women’s experiences from participating in a 2-year diet intervention. Int. J. Behav. Med. 23(1), 84–93 (2016)CrossRefGoogle Scholar
  2. 2.
    Alahäivälä, T., Oinas-Kukkonen, H., Jokelainen, T.: Software architecture design for health BCSS: case onnikka. In: Berkovsky, S., Freyne, J. (eds.) PERSUASIVE 2013. LNCS, vol. 7822, pp. 3–14. Springer, Heidelberg (2013). Scholar
  3. 3.
    Anderson, R.J., Brice, S.: The mood-enhancing benefits of exercise: memory biases augment the effect. Psychol. Sport Exerc. 12(2), 79–82 (2011)CrossRefGoogle Scholar
  4. 4.
    Basic, J., Yadamsuren, B., Saparova, D., Ma, Y.: Persuasive features in a web-based system for weight-loss team competition. In: Stephanidis, C. (ed.) HCI 2013. CCIS, vol. 374, pp. 125–129. Springer, Heidelberg (2013). Scholar
  5. 5.
    Brancati, F.L., Kao, W.L., Folsom, A.R., Watson, R.L., Szklo, M.: Incident type 2 diabetes mellitus in African American and white adults: the Atherosclerosis Risk in Communities Study. JAMA 283(17), 2253–2259 (2000)CrossRefGoogle Scholar
  6. 6.
    Chang, T.-R., Kaasinen, E., Kaipainen, K.: Persuasive design in mobile applications for mental well-being: multidisciplinary expert review. In: Godara, B., Nikita, K.S. (eds.) MobiHealth 2012. LNICST, vol. 61, pp. 154–162. Springer, Heidelberg (2013). Scholar
  7. 7.
    DeCharms, R.: Personal Causation: The Internal Affective Determinants of Behavior. Academic Press, New York (1968)Google Scholar
  8. 8.
    Deci, E.L.: Effects of externally mediated rewards on intrinsic motivation. J. Pers. Soc. Psychol. 18, 105–115 (1971)CrossRefGoogle Scholar
  9. 9.
    Deliens, T., Clarys, P., De Bourdeaudhuij, I., Deforche, B.: Determinants of eating behaviour in university students: a qualitative study using focus group discussions. BMC Public Health 14(1), 53 (2014)CrossRefGoogle Scholar
  10. 10.
    Derrick, D.C., Jenkins, J.L., Nunamaker Jr., J.F.: Design principles for special purpose, embodied, conversational intelligence with environmental sensors (SPECIES) agents’. AIS Trans. Hum. Comput. Interact. 3(2), 62–81 (2011)CrossRefGoogle Scholar
  11. 11.
    Fogg, B.J.: Persuasive Technology. Morgan Kaufmann Publishers, Amsterdam (2003)Google Scholar
  12. 12.
    Gao, C., Kong, F., Tan, J.: Healthaware: tackling obesity with health aware smart phone systems. In: Proceedings IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1549–1554. IEEE (2009)Google Scholar
  13. 13.
    Ghinea, G., Spyridonis, F., Serif, T., Frank, A.O.: 3-D pain drawings–mobile data collection using a PDA. IEEE Trans. Inf Technol. Biomed. 12(1), 27–33 (2008)CrossRefGoogle Scholar
  14. 14.
    Golden, N.H., Schneider, M., Wood, C.: Preventing obesity and eating disorders in adolescents. Pediatrics 138(3), e20161649 (2016)CrossRefGoogle Scholar
  15. 15.
    Hansen, J., Gronli, T.M., Ghinea, G.: Cloud to device push messaging on android: a case study. In: Proceedings 6th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 1298–1303. IEEE (2012)Google Scholar
  16. 16.
    Hermawati, S., Lawson, G.: Managing obesity through mobile phone applications: a state-of-the-art review from a user-centred design perspective. Pers. Ubiquit. Comput. 18(8), 2003–2023 (2014)CrossRefGoogle Scholar
  17. 17.
    Hu, F.B., Stampfer, M.J., Colditz, G.A., Ascherio, A., Rexrode, K.M., Willett, W.C., Manson, J.E.: Physical activity and risk of stroke in women. JAMA 283(22), 2961–2967 (2000)CrossRefGoogle Scholar
  18. 18.
    IJsselsteijn, W., de Kort, Y., Midden, C., Eggen, B., van den Hoven, E.: Persuasive technology for human well-being: setting the scene. In: IJsselsteijn, W.A., de Kort, Y.A.W., Midden, C., Eggen, B., van den Hoven, E. (eds.) PERSUASIVE 2006. LNCS, vol. 3962, pp. 1–5. Springer, Heidelberg (2006). Scholar
  19. 19.
    Intille, S.S., Kukla, C., Farzanfar, R., Bakr, W.: Just-in-time technology to encourage incremental, dietary behavior change. In: Proceedings AMIA Annual Symposium Proceedings, p. 874 (2003)Google Scholar
  20. 20.
    Kivimäki, M., Kuosma, E., Ferrie, J.E., Luukkonen, R., Nyberg, S.T., Alfredsson, L., Knutsson, A.: Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health 2(6), e277–e285 (2017)CrossRefGoogle Scholar
  21. 21.
    Kjeldskov, J., Stage, J.: New techniques for usability evaluation of mobile systems. Int. J. Hum Comput Stud. 60(5–6), 599–620 (2004)CrossRefGoogle Scholar
  22. 22.
    Langrial, S., Oinas-Kukkonen, H., Wang, S.: Design of a web-based information system for sleep deprivation – a trial study. In: Eriksson-Backa, K., Luoma, A., Krook, E. (eds.) WIS 2012. CCIS, vol. 313, pp. 41–51. Springer, Heidelberg (2012). Scholar
  23. 23.
    Lee, J.K., Lee, J.W.: Internet advertising strategy by comparison challenge approach. In: Proceedings of the 5th International Conference on Electronic Commerce, pp. 450–457 (2003)Google Scholar
  24. 24.
    Lepper, M.R., Greene, D.: The Hidden Costs of Reward. Lawrence Erlbaum Associates, Inc., Hillsdale (1978)Google Scholar
  25. 25.
    Leswing, K.: Pokémon Go was most downloaded iOS app worldwide in 2016, Apple says. Business Insider (2017)Google Scholar
  26. 26.
    Lim, Y.K., Pangam, A., Periyasami, S., Aneja, S.: Comparative analysis of high-and low-fidelity prototypes for more valid usability evaluations of mobile devices. In: Proceedings of the 4th Nordic Conference on Human-Computer Interaction: Changing Roles, pp. 291–300. ACM (2006)Google Scholar
  27. 27.
    Linus Pauling Institute Cognitive Function in Depth. Last Accessed 20 June 2017
  28. 28.
    Lowe, M., Levine, A.: Eating motives and the controversy over dieting: eating less than needed versus less than wanted. Obes Res. 13(5), 797–806 (2005). North American Association for the Study of ObesityCrossRefGoogle Scholar
  29. 29.
    Michaelidou, N., Christodoulides, G., Torova, K.: Determinants of healthy eating: a cross-national study on motives and barriers. Int. J. Cons. Stud. 36(1), 17–22 (2012)CrossRefGoogle Scholar
  30. 30.
    Neumark-Sztainer, D.: Preventing obesity and eating disorders in adolescents: what can health care providers do? J. Adolesc. Health 44(3), 206–213 (2009)CrossRefGoogle Scholar
  31. 31.
    Nikolaou, C.K., Lean, M.E.J.: Mobile applications for obesity and weight management: current market characteristics. Int. J. Obes. 41(1), 200 (2017)CrossRefGoogle Scholar
  32. 32.
    Oinas-Kukkonen, H., Harjumaa, M.: A systematic framework for designing and evaluating persuasive systems. In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS, vol. 5033, pp. 164–176. Springer, Heidelberg (2008). Scholar
  33. 33.
    Oinas-Kukkonen, H., Harjumaa, M.: Persuasive systems design: key issues, process model, and system features. Commun. Assoc. Inf. Syst. 24(1), 28 (2009)Google Scholar
  34. 34.
    Orji, R., Moffatt, K.: Persuasive technology for health and wellness: state-of-the-art and emerging trends. Health Inf. J. 24, 66–91 (2016)CrossRefGoogle Scholar
  35. 35.
    Poole, L., Steptoe, A., Wawrzyniak, A.J., Bostock, S., Mitchell, E.S., Hamer, M.: Associations of objectively measured physical activity with daily mood ratings and psychophysiological stress responses in women. Psychophysiology 48(8), 1165–1172 (2011)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Purpura, S., Schwanda, V., Williams, K., Stibler, W. Sengers, P.: Fit4life: the design of a persuasive technology promoting healthy behavior and ideal weight. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 423–432. ACM, New York (2011)Google Scholar
  38. 38.
    Reed, J., Ones, D.S.: The effect of acute aerobic exercise on positive activated affect: a meta-analysis. Psychol. Sport Exerc. 7(5), 477–514 (2006)CrossRefGoogle Scholar
  39. 39.
    Salici, A.G., Sisman, P., Gul, O.O., Karayel, T., Cander, S., Ersoy, C.: The prevalence of obesity and related factors: an urban survey study. Endocr. Abstr. 49(EP679) (2017).
  40. 40.
    Segerståhl, K., Kotro, T., Väänänen-Vainio-Mattila, K.: Pitfalls in persuasion: how do users experience persuasive techniques in a web service? In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 211–222. Springer, Heidelberg (2010). Scholar
  41. 41.
    Serif, T., Ghinea, G.: Recording of time-varying back-pain data: a wireless solution. IEEE Trans. Inf Technol. Biomed. 9(3), 447–458 (2005)CrossRefGoogle Scholar
  42. 42.
    Spyridonis, F., Hansen, J., Grønli, T.M., Ghinea, G.: PainDroid: an android-based virtual reality application for pain assessment. Multimed. Tools Appl. 72(1), 191–206 (2014)CrossRefGoogle Scholar
  43. 43.
    Statista. Annual number of mobile app downloads worldwide 2021|Statistic. Last Accessed 03 June 2017
  44. 44.
    Stevenson, C., Doherty, G., Barnett, J., Muldoon, O., Trew, K.: Adolescents’ views of food and eating: identifying barriers to healthy eating. J. Adolesc. 30(3), 417–434 (2007)CrossRefGoogle Scholar
  45. 45.
    Sturm, R.: The effects of obesity, smoking, and drinking on medical problems and costs. Health Aff. 21(2), 245–253 (2002)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Verloop, J., Rookus, R.A., van der Kooy, K., van Leeuwen, F.E.: Physical activity and breast cancer risk in women aged 20-54 years. J. Nat. Cancer Inst. 92(2), 128–135 (2000)CrossRefGoogle Scholar
  47. 47.
    Wiafe, I., Alhammad, M.M., Nakata, K., Gulliver, S.R.: Analyzing the persuasion context of the persuasive systems design model with the 3D-RAB model. In: Bang, M., Ragnemalm, E.L. (eds.) PERSUASIVE 2012. LNCS, vol. 7284, pp. 193–202. Springer, Heidelberg (2012). Scholar
  48. 48.
    Young, M.M.: Twitter me: using micro-blogging to motivate teenagers to exercise. In: Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 439–448. Springer, Heidelberg (2010). Scholar
  49. 49.
    Zheng, Y., Manson, J.E., Yuan, C., Liang, M.H., Grodstein, F., Stampfer, M.J., Willett, W.C., Hu, F.B.: Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA 318(3), 255–269 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sunny Ladwa
    • 1
  • Tor-Morten Grønli
    • 2
  • Gheorghita Ghinea
    • 1
    • 2
    Email author
  1. 1.Brunel UniversityUxbridgeUK
  2. 2.Westerdals Oslo School of Arts, Communication and TechnologyOsloNorway

Personalised recommendations