Skip to main content

Fundamentals

  • Chapter
  • First Online:
Raw Materials for Future Energy Supply

Abstract

Natural resources are generally subdivided into renewable and non-renewable raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reference conditions in chemistry are defined for the material specifications for each element: Standard Conditions are room temperature (25 ℃ or 298.14 K) and a pressure of 101.3 kPa. The reference temperature for Normal Conditions is 0 ℃ or 273.15 K.

  2. 2.

    A general increase in the graphite price and an increased demand for its application in lithium -ion batteries contributed to an improvement in the economic conditions (Regiowiki [3]).

  3. 3.

    The term “criticality ” with reference to raw material supply has become established in the English-speaking world. It should be noted that in this context the use of the term “criticality ” has nothing in common with the classical definitions in physics.

  4. 4.

    The definition of this evaluation criterion is provided in Graedel et al. [10, p. 1066]. Manufacturers, government authorities and non-governmental organizations should demonstrate with this criterion the environmental impacts caused by the extraction processes of a specific raw material . The environmental impacts take into consideration the potential damage for the environment and mankind. The database is derived from the ecoinvent Centre—Swiss Centre for Life Cycle Inventories [12]. With the use of the third axis, a criticality space replaces the criticality matrix . See Graedel et al. [10, 11] for further details.

  5. 5.

    See glossary World Governance Index of the World Bank (WGI) .

  6. 6.

    See glossary Herfindahl-Hirschmann-Index (HHI) .

  7. 7.

    A group of raw materials are termed “of strategic economic importance ” with respect to an open technology concept (no restrictions because of the availability of raw materials) in an attempt to avoid the disadvantages of a static list (refer to BMBF [17]).

  8. 8.

    Geogenic means that the mineral raw materials are developed and occur naturally on Earth. This includes the raw materials groups of the mineral natural resources and fossil energy natural resources as they are defined here. They are distinguished in this context from the biologically grown resources such as biomass .

  9. 9.

    Although the energy received is preserved and, for example, transferred to heat disseminated to the environment , the thermodyamic possibility for useful work is lost. Specialists describe the capability for useful work as exergy .

  10. 10.

    Invested energy usually includes the total life cycle including the development and decommissioning of the necessary facilities (cumulative energy requirement ).

  11. 11.

    Recycling is sometimes constrained by chemical changes of some raw materials, as for example lime that is burned into cement . These raw materials are generally sufficiently available, and are not critical to the energy transition .

  12. 12.

    Processing is undertaken in facilities located at the mine where an enriched and marketable product is produced by crushing , milling and various enrichment methods.

References

(Note: All Web links listed were active as of the access date but may no longer be available.)

  1. Bradshaw, A. M./Hamacher, T.: “Nuclear fusion and the helium supply problem”. In: Fusion Engineering and Design, 88, 2013, S. 2694–2697.

    Google Scholar 

  2. Hagelüken, C.: “Secondary Raw Material Sources for Precious and Special Metals”. In: Sinding-Larsen, R./Wellmer, F.-W. (Eds.): Non-Renewable Resource Issues- Geoscientific and Societal Challenges. Dordrecht, Heidelberg: Springer Verlag, 2012, pp. 195–212.

    Google Scholar 

  3. Regiowiki: Graphit Kropfmühl GmbH, Regiowiki für Niederbayern und Altötting 2015. URL: http://regiowiki.pnp.de/index.php/Graphit_Kropfm%C3%BChl_GmbH [accessed: 28.09.2015].

  4. Meadows, D. H./Meadows, D. L./Randers, J./Behrens III, W. W.: The Limits to Growth, A Report for the Club of Rome’s Project on the Predicament of Mankind, Universe Books: New York 1972.

    Google Scholar 

  5. Randers, J.: 2052A global Forecast for the next forty Years, A Report to the Club of Rome commemorating the 40th Anniversary of the “The Limits to Growth”, White River Junction, Vermont: Chelsea Green Publishing 2012.

    Google Scholar 

  6. Buchholz, P./Huy, D./Sievers, H.: “DERA Rohstoffliste 2012, Angebotskonzentration bei Metallen und Industriemineralen – Potenzielle Preis- und Lieferrisiken”, In: DERA Rohstoffinformationen Nr. 10, Deutsche Rohstoffagentur in der Bundesanstalt für Geowissenschaften und Rohstoffe 2012.

    Google Scholar 

  7. Bradshaw, A. M./Reuter, B./Hamacher, T.: “The Potential Scarcity of Rare Elements for the Energiewende”. In: GREEN, 3: 2, 2013, S. 93–111.

    Google Scholar 

  8. European Commission: Critical raw materials for the EU (Report of the Ad-hoc-Working Group on defining critical Raw Materials), Brussels 2010. URL: http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/report-b_en.pdf [accessed: 01.05.2014].

  9. European Commission: Critical raw materials for the EU, Report of the Ad-hoc-Working Group on defining critical Raw Materials, Brussels 2014. URL: http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/crm-report-on-critical-raw-materials_en.pdf [accessed: 26.06.2014].

  10. Graedel, T. E./Barr, R./Chandler, C./Chase, T./Choi, J./Christoffersen, L./Friedlander, E./Henly, C./Jun, C./Nassar, N. T./Schechner, D./Warren, S./Yang, M./Zhu, C.: “Methodology of Metal Criticality Determination”. In: Environmental Science & Technology, 46, 2012, p. 1063–1070.

    Google Scholar 

  11. Graedel, T.E./Harper, E.M./Nasser, N.T./Reck, B.K.: “On the Materials Basis of modern Society”. In: Proceedings of the National Academy of Sciences of the USA (Early Edition), 2013. URL: http://www.pnas.org/cgi/doi/10.1073/pnas.1312752110 [accessed: 01.04.2014].

  12. Hischier, R./Weidema, B. (Eds.): Implementation of Life Cycle Impact Assessment Methods (Data v.2.2, ecoinvent report No. 3), Dübendorf: Swiss Centre for Life Cycle Inventories 2010.

    Google Scholar 

  13. Buijs, B./Sievers, H./Tercero Espinoza, L. A.: “Limits to the critical raw material approach”. In: Waste and Resource Management, 165: WR4, 2012, pp. 201–208.

    Google Scholar 

  14. Wellmer, F.-W./Schmidt, H.: “Versorgungslage bei Rohstoffen”. In: Stahl und Eisen, 89: 2, 1989, pp. 55–60.

    Google Scholar 

  15. European Commission: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee on the Regions on the 2017 list of Critical Raw Materials for the EU, 13.9.2017. URL: https://ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-490-F1-EN-MAIN-PART-1.PDF [accessed 26.1.2018].

  16. Bundesministerium für Wirtschaft und Energie: Bekanntmachung im Rahmen der Rohstoffstrategie der Bundesregierung: Richtlinien über die Gewährung von bedingt rückzahlbaren Zuwendungen zur Verbesserung der Versorgung der Bundesrepublik Deutschland mit kritischen Rohstoffen (Explorationsförderrichtlinien), Berlin: BMWi 2012.

    Google Scholar 

  17. Bundesministerium für Bildung und Forschung: Wirtschaftsstrategische Rohstoffe für den Hightech-Standort Deutschland (r4), Bonn: BMBF 2012.

    Google Scholar 

  18. Buchholz, P./Huy, D./Liedtke, M./Schmidt, M.: DERA-Rohstoffliste 2014, Angebotskonzentration bei mineralischen Rohstoffen und Zwischenprodukten – Potenzielle Preis- und Lieferrisiken (DERA Rohstoffinformationen Nr. 24), Berlin, Deutsche Rohstoffagentur in der Bundesanstalt für Geowissenschaften und Rohstoffe 2015. URL: http://www.deutsche-rohstoffagentur.de/DERA/DE/Publikationen/Schriftenreihe/schriftenreihe_node.html [Stand: accessed 04.2015].

  19. Wellmer, F.-W./Becker-Platen, J.D. (Eds.): Mit der Erde leben – Beiträge Geologischer Dienste zur Dasesinsvorsorge und nachhaltigen Entwicklung, Heidelberg: Springer Verlag 1999.

    Google Scholar 

  20. Wellmer, F.-W./Hagelüken, C.: “The Feedback Control Cycle of Mineral Supply, Increase of Raw Material Efficiency, and Sustainable Development”. In: Minerals, 5, 2015, pp. 815–836.

    Google Scholar 

  21. Erdmann, L./Graedel, T.E.: “Criticality of non-fuel minerals: a review of major approaches and analyses”. In: Environmental Science and Technology, Bd. 45: 18, 2011, pp. 7620–7630.

    Google Scholar 

  22. National Research Council of the National Academies: Minerals, Critical Minerals, and the U.S. Economy, Washington, D.C.: The National Academies Press 2008.

    Google Scholar 

  23. Sames, C.-W./Kegel, K.-E./Johannes, D.: “Millennium 100 Jahre Bergbau im Rückblick”. In: Erzmetall, 53: 12, 2000, pp. 759–760.

    Google Scholar 

  24. Honolka, H.: Die Eigendynamik sozialwissenschaftlicher Aussagen: Zur Theorie des self-fulfilling prophecy, Frankfurt a. M.: Campus Verlag 1976.

    Google Scholar 

  25. Bundesanstalt für Geowissenschaften und Rohstoffe/Deutsches Institut für Wirtschaftsforschung: Auswirkungen der weltweiten Konzentrierung in der Bergbauproduktion auf die Rohstoffversorgung der deutschen Wirtschaft (Joint Report for the Research Project Nr. 26/97, Gutachten im Auftrag des Bundesministeriums für Wirtschaft), Bundesanstalt für Geowissenschaften und Rohstoffe, Deutsches Institut für Wirtschaftsforschung 1999, pp. 253–269.

    Google Scholar 

  26. Achzet, B./Reller, A./Zepf, V./Rennie, C./Ashfield, M./Simmons, J.: Materials critical to the Energy Industry. An introduction (Report for the BP Energy Sustainability Challenge), Augsburg: University Augsburg 2011. URL: http://www.physik.uni-augsburg.de/lehrstuehle/rst/downloads/Materials_Handbook_Rev_2012.pdf [accessed: 28.10.2014].

  27. Scholz, R./Wellmer, F.-W./DeYoung jr., J. H.: “Phosphorus Losses in Production Processes before the ‘Crude Ore’ and ‘Marketable Production’ Entries in Reported Statistics”. In: Scholz, R./Roy, A.H./Brand, F.S./Hellums, D.T./Ulrich, A.E. (Eds.): Sustainable Phosphorus ManagementA Global Transdisciplinary Roadmap, Dordrecht, Heidelberg etc.: Springer Verlag 2014.

    Google Scholar 

  28. Sievers, H./Buijs, B./Tercero Espinoza, L. A.: “Critical Minerals for the EU”, In: Polinares Working Paper 31, 2012. URL: http://www.polinares.eu/docs/d2-1/polinares_wp2_chapter19.pdf [accessed: 15.10.2015].

  29. Wellmer, F.-W./Dalheimer, M.: “The Feedback Control Cycle as Regulator of past and future Mineral Supply”. In: Mineralium Deposita, 47: 7, 2012, pp. 713–729.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich-W. Wellmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wellmer, FW. et al. (2019). Fundamentals. In: Raw Materials for Future Energy Supply. Springer, Cham. https://doi.org/10.1007/978-3-319-91229-5_2

Download citation

Publish with us

Policies and ethics