Skip to main content

Physical Properties Characterization

  • Chapter
  • First Online:
  • 933 Accesses

Part of the book series: AAPS Introductions in the Pharmaceutical Sciences ((AAPSINSTR))

Abstract

Powder characterization is a fundamental step for proper design and control of solid dosage form manufacturing processes. Properties like surface area, charge, crystal habit, the presence of water and impurities are responsible for dramatic changes in the physical-chemical and biological behavior of pharmaceutical products. Therefore, accurate tuning of powder features is compulsory. In this regard, an arsenal of particle characterization techniques have today reached a high level of reliability and sensitivity, which allow insightful investigation of the complex crosstalk between particle properties and pharmaceutical processes. Novel technologies are now on the verge of breakthrough advances thanks to new methodologies and computer science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brunauer S, Deming LS, Deming WE, Teller E. On a theory of the van der Waals adsorption of gases. J Am Chem Soc. 1940;62:1723–32.

    Article  CAS  Google Scholar 

  2. IUPAC. Compendium of chemical terminology: gold book. IUPAC Compend Chem Terminol. 2014;1670.

    Google Scholar 

  3. Brunauer S, Emmett PH, Teller E. Gases in multimolecular layers. J Am Chem Soc [Internet]. 1938;60(1):309–19. Available from: http://pubs.acs.org/doi/abs/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  4. Gregg SJ, Sing KSW, Salzberg HW. Adsorption surface area and porosity. J Electrochem Soc. 1967;114:279C.

    Article  Google Scholar 

  5. Naik S, Mukherjee R, Chaudhuri B. Triboelectrification: a review of experimental and mechanistic modeling approaches with a special focus on pharmaceutical powders. Int J Pharm. 2016;510:375–85.

    Article  CAS  Google Scholar 

  6. Hunter RJ. Zeta potential in colloid science: principles and applications [Internet]. Vol. 8, Trends in food science & technology. 1981. 399 p. Available from: https://books.google.co.nz/books?id=9I3-BAAAQBAJ

  7. Sze A, Erickson D, Ren L, Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J Colloid Interface Sci. 2003;261(2):402–10.

    Article  CAS  Google Scholar 

  8. Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol. 2011;697:63–70.

    Article  CAS  Google Scholar 

  9. Wong J, Kwok PCL, Chan HK. Electrostatics in pharmaceutical solids. Chem Eng Sci. 2015;125:225–37.

    Article  CAS  Google Scholar 

  10. Kodre KV, Attarde SR, Yendhe PR, Patil RY, Barge VU. Differential scanning calorimetry: a review. Res Rev J Pharm Anal. 2014;3(3):11–22.

    CAS  Google Scholar 

  11. Rabel SR, Jona JA, Maurin MB. Applications of modulated differential scanning calorimetry in preformulation studies. J Pharm Biomed Anal. 1999;21(2):339–45.

    Article  CAS  Google Scholar 

  12. McGregor C, Bines E. The use of high-speed differential scanning calorimetry (Hyper-DSCTM) in the study of pharmaceutical polymorphs. Int J Pharm. 2008;350(1–2):48–52.

    Article  CAS  Google Scholar 

  13. Crouter A, Briens L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech [Internet]. 2014;15(1):65–74. Available from: http://link.springer.com/10.1208/s12249-013-0036-0

    Article  CAS  Google Scholar 

  14. Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, et al. Gravimetric measurements of water. In: Handbook of food analytical chemistry [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2005. p. 5–33. Available from: https://doi.org/wiley.com/10.1002/0471709085.ch1.

  15. Driemeier C, Mendes FM, Oliveira MM. Dynamic vapor sorption and thermoporometry to probe water in celluloses. Cellulose. 2012;19(4):1051–63.

    Article  CAS  Google Scholar 

  16. Snodin DJ, McCrossen SD. Guidelines and pharmacopoeial standards for pharmaceutical impurities: overview and critical assessment. Regul Toxicol Pharmacol. 2012;63(2):298–312.

    Article  CAS  Google Scholar 

  17. WHO. Microbiological quality of non-sterile products: recommended acceptance criteria for pharmaceutical preparations. In: The international pharmacopoeia [Internet]. 2016. p. 1–2. Available from: http://apps.who.int/phint/pdf/b/Jb.10.3.3.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hickey, A.J., Giovagnoli, S. (2018). Physical Properties Characterization. In: Pharmaceutical Powder and Particles. AAPS Introductions in the Pharmaceutical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-91220-2_4

Download citation

Publish with us

Policies and ethics