Skip to main content

Limitations of Corneal Deformation Modelling During IOP Measurement – A Review

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 762))

Abstract

This paper examines practical constraints and problems related to modelling of the human cornea during intraocular pressure measurement using Corvis ST. It highlights the essential role of corneal deformation image processing and analysis in the field of numerical modelling. By combining these two disciplines: biomechanics, which deals with modelling the behaviour of biological structures, and image processing methods, it is possible to verify and compare the values obtained for the tested models in numerical experiments with those obtained through image analysis. In the case of a biomechanical model of the eyeball, for which no ‘gold standard’ has yet been developed, the possibility of such a comparison is particularly important and valuable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rio-Cristobal, A., Martin, R.: Corneal assessment technologies: current status. Surv. Ophthalmol. 59, 599–614 (2014)

    Article  Google Scholar 

  2. Konstantopoulos, A., Hossain, P., Anderson, D.F.: Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br. J. Ophthalmol. 91, 551–557 (2007)

    Article  Google Scholar 

  3. See, J.L.S.: Imaging of the anterior segment in glaucoma. Clin. Experiment. Ophthalmol. 37, 506–513 (2009)

    Article  Google Scholar 

  4. Koprowski, R., Rzendkowski, M., Wróbel, Z.: Automatic method of analysis of OCT images in assessing the severity degree of glaucoma and the visual field loss. Biomed. Eng. Online 13, 16 (2014)

    Article  Google Scholar 

  5. Koprowski, R., Siedlecki, D., Kasprzak, H., Wróbel, Z.: Rapid dynamic changes of the geometry of the anterior segment of the eye: a method of automatic spatial correction of a temporal sequence of OCT images. Comput. Biol. Med. 72, 132–137 (2016)

    Article  Google Scholar 

  6. Gao, Z., Bu, W., Zheng, Y., Wu, X.: Automated layer segmentation of macular OCT images via graph-based SLIC superpixels and manifold ranking approach. Comput. Med. Imaging Graph. 55, 42–53 (2016)

    Article  Google Scholar 

  7. Kasprzak, H., Boszczyk, A.: Numerical analysis of corneal curvature dynamics based on Corvis tonometer images. J. Biophotonics 9, 436–444 (2016)

    Article  Google Scholar 

  8. Ji, C., Yu, J., Li, T., Tian, L., Huang, Y., Wang, Y., Zheng, Y.: Dynamic curvature topography for evaluating the anterior corneal surface change with Corvis ST. Biomed. Eng. Online 14, 53 (2015)

    Article  Google Scholar 

  9. Hong, J., Xu, J., Wei, A., Deng, S.X., Cui, X., Yu, X., Sun, X.: A new tonometer-the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest. Ophthalmol. Vis. Sci. 54, 659–665 (2013)

    Article  Google Scholar 

  10. Valbon, B.F., Ambrosio Jr., R., Fontes, B.M., Alves, M.R.: Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq. Bras. Oftalmol. 76, 229–232 (2013)

    Article  Google Scholar 

  11. Nemeth, G., Hassan, Z., Csutak, A., Szalai, E., Berta, A., Modis, L.: Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J. Refract. Surg. 29, 558–563 (2013)

    Article  Google Scholar 

  12. Ambrosio Jr., R., Ramos, I., Luz, A., Faria, F.C., Steinmueller, A., Krug, M., Belin, M.W., Roberts, C.J.: Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev. Bras. Oftalmol. 72, 99–102 (2013)

    Article  Google Scholar 

  13. Smedowski, A., Weglarz, B., Tarnawska, D., Kaarniranta, K., Wylegala, E.: Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea. Investig. Ophthalmol. Vis. Sci. 55, 666–673 (2014)

    Article  Google Scholar 

  14. Koprowski, R.: Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer. Biomed. Eng. Online 13, 150 (2014)

    Article  Google Scholar 

  15. Tian, L., Wang, D., Wu, Y., Meng, X., Chen, B., Ge, M., Huang, Y.: Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol. 94, e317–e324 (2016)

    Article  Google Scholar 

  16. Kling, S., Hafezi, F.: Corneal biomechanics – a review. Ophthal. Physiol. Opt. 37. 1–13 (2017)

    Article  Google Scholar 

  17. Jedzierowska, M., Koprowski, R., Wrobel, Z.: Overview of the ocular biomechanical properties measured by the ocular response analyzer and the corvis ST. Inf. Technol. Biomed. 4, 377–386 (2014)

    Google Scholar 

  18. Bekesi, N., Dorronsoro, C., De La Hoz, A., Marcos, S.: Material properties from air puff corneal deformation by numerical simulations on model corneas. PLoS One 11, e0165669 (2016)

    Article  Google Scholar 

  19. Kling, S., Bekesi, N., Dorronsoro, C., Pascual, D., Marcos, S.: Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation. PLoS One 9, e104904 (2014)

    Article  Google Scholar 

  20. Nguyen, T.D., Boyce, B.L.: An inverse finite element method for determining the anisotropic properties of the cornea. Biomech. Model. Mechanobiol. 10, 323–337 (2011)

    Article  Google Scholar 

  21. Sinha Roy, A., Kurian, M., Matalia, H., Shetty, R.: Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo. J. Mech. Behav. Biomed. Mater. 48, 173–182 (2015)

    Article  Google Scholar 

  22. Simonini, I., Angelillo, M., Pandolfi, A.: Theoretical and numerical analysis of the corneal air puff test. J. Mech. Phys. Solids. 93, 118–134 (2016)

    Article  Google Scholar 

  23. Han, Z., Tao, C., Zhou, D., Sun, Y., Zhou, C., Ren, Q., Roberts, C.J.: Air puff induced corneal vibrations: theoretical simulations and clinical observations. J. Refract. Surg. 30, 208–213 (2014)

    Article  Google Scholar 

  24. Kling, S., Akca, I.B., Chang, E.W., Scarcelli, G., Bekesi, N., Yun, S.-H., Marcos, S.: Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties. J. R. Soc. Interface 11, 20140920 (2014)

    Article  Google Scholar 

  25. Shih, P.-J., Cao, H.-J., Huang, C.-J., Wang, I.-J., Shih, W.-P., Yen, J.-Y.: A corneal elastic dynamic model derived from Scheimpflug imaging technology. Ophthal. Physiol. Opt. 35, 663–672 (2015)

    Article  Google Scholar 

  26. Koprowski, R., Ambrosio, R.: Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus. Comput. Biol. Med. 66, 170–178 (2015)

    Article  Google Scholar 

  27. Koprowski, R., Ambrosio, R., Reisdorf, S.: Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement. J. Biophotonics 8, 968–978 (2015)

    Article  Google Scholar 

  28. Kling, S.: Corneal Biomechanical Properties: Measurement. Modification and Simulation. Institutio de Oftalmobiologia Aplicada, Spain (2014)

    Google Scholar 

  29. Antonios, R., Fattah, M.A., Maalouf, F., Abiad, B., Awwad, S.T.: Central corneal thickness after cross-linking using high-definition optical coherence tomography, ultrasound, and dual Scheimpflug tomography: a comparative study over one year. Am. J. Ophthalmol. 167, 38–47 (2016)

    Article  Google Scholar 

  30. Huseynova, T., Waring, G.O., Roberts, C., Krueger, R.R., Tomita, M.: Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am. J. Ophthalmol. 157, 885–893 (2014)

    Article  Google Scholar 

  31. Li, T., Tian, L., Wang, L., Hon, Y., Lam, A.K.C., Huang, Y., Wang, Y., Zheng, Y.: Correction on the distortion of Scheimpflug imaging for dynamic central corneal thickness. J. Biomed. Opt. 20, 56006 (2015)

    Article  Google Scholar 

  32. Hon, Y., Li, T., Zheng, Y., Lam, A.K.C.: Corneal thinning during air puff indentation. Invest. Ophthalmol. Vis. Sci. 55, 3707 (2014)

    Google Scholar 

  33. Pandolfi, A., Manganiello, F.: A model for the human cornea: constitutive formulation. Biomechan. Model. 5, 237–246 (2006)

    Article  Google Scholar 

  34. Cavas-Martinez, F., Fernandez-Pacheco, D.G., De la Cruz-Sanchez, E., Nieto Martinez, J., Fernandez Canavate, F.J., Vega-Estrada, A., Plaza-Puche, A.B., Alio, J.L.: Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia. PLoS One 9, e110249 (2014)

    Article  Google Scholar 

  35. Simonini, I., Pandolfi, A.: Customized finite element modelling of the human cornea. PLoS One 10(6), e0130426 (2015)

    Article  Google Scholar 

  36. Nejad, T.M., Foster, C., Gongal, D.: Finite element modelling of cornea mechanics: a review. Arq. Bras. Oftalmol. 77, 60–65 (2014)

    Article  Google Scholar 

  37. Bekesi, N., Kochevar, I.E., Marcos, S.: Corneal biomechanical response following collagen cross-linking with Rose Bengal-green light and riboflavin-UVA. Investig. Ophthalmol. Vis. Sci. 57, 992–1001 (2016)

    Article  Google Scholar 

  38. Dua, H.S., Faraj, L. a, Branch, M.J., Yeung, A.M., Elalfy, M.S., Said, D.G., Gray, T., Lowe, J.: The collagen matrix of the human trabecular meshwork is an extension of the novel pre-descemet’s layer (Dua’s layer). Br. J. Ophthalmol. 98, 691–697 (2014)

    Article  Google Scholar 

  39. Ali, N.Q., Patel, D.V., McGhee, C.N.: Biomechanical responses of healthy and keratoconic corneas measured using a noncontact Scheimpflug-based tonometer. Invest. Ophthalmol. Vis. Sci. 55, 3651–3659 (2014)

    Article  Google Scholar 

  40. Koprowski, R., Lyssek-Boron, A., Nowinska, A., Wylegala, E., Kasprzak, H., Wrobel, Z.: Selected parameters of the corneal deformation in the Corvis tonometer. Biomed. Eng. Online 13, 55 (2014)

    Article  Google Scholar 

  41. Wójcicka, A., Jędrusik, P., Stolarz, M., Kubina, R., Wróbel, Z.: Using analysis algorithms and image processing for quantitative description of colon cancer cells. In: Pietka, E., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine, vol. 3, pp. 385–395. Springer, Cham (2014)

    Google Scholar 

  42. Popielski, P., Koprowski, R., Wróbel, Z., Wilczyński, S., Doroz, R., Wróbel, K., Porwik, P.: The matching method for rectified stereo images based on minimal element distance and RGB component analysis. In: Nguyen, N.T., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds.) Computational Collective Intelligence: 8th International Conference, ICCCI 2016, Halkidiki, Greece, 28–30 September 2016, Proceedings, Part II, pp. 482–493. Springer, Cham (2016)

    Chapter  Google Scholar 

  43. Walczak, M.: 3D measurement of geometrical distortion of synchrotron-based perforated polymer with Matlab algorithm. In: Pieketka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine: 5th International Conference, vol. 1, pp. 245–252. Springer, Cham (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Jędzierowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jędzierowska, M., Koprowski, R., Wróbel, Z. (2019). Limitations of Corneal Deformation Modelling During IOP Measurement – A Review. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_41

Download citation

Publish with us

Policies and ethics