Skip to main content

CAD of Sigmatism Using Neural Networks

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2018)

Abstract

Sigmatism, or lisp, is a common speech pathology defined by the misarticulation of sibilants and commonly appears in preschool-age children. Automated diagnosis from speech data has been used for other disorders, and the use of acoustic features could objectify the diagnosis procedure. 1593 multichannel recordings from 85 young children were subjected to feature extraction and classification using a neural network. The classification performance was evaluated for single and multichannel input as well as multiple feature sets and articulation phases. Multichannel recordings increased the classifier accuracy from 78.75% to 87.27% when using cepstral and spectral features. The introduction of a multichannel acoustic features was shown to increase sigmatism detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borsel, J.V., Rentergem, S.V., Verhaeghe, L.: The prevalence of lisping in young adults. J. Commun. Disord. 40(6), 493–502 (2007)

    Article  Google Scholar 

  2. Lobacz, P., Dobrzanska, K.: Acoustic description of sybilant phones in pronunciation of pre-school children, (PL) Opis akustyczny glosek sybilantnych w wymowie dzieci przedszkolnych. Audiofonologia 15, 7–26 (1999). (in Polish)

    Google Scholar 

  3. Trzaskalik, J.: Sigmatismus lateralis in polish logopedics literature. theoretical considerations, (PL) Seplenienie boczne w polskiej literaturze logopedycznej. Rozważania teoretyczne. Forum Logopedyczne 24, 33–46 (2016). (in Polish)

    Google Scholar 

  4. Majidnezhad, V.: A novel hybrid of genetic algorithm and ANN for developing a high efficient method for vocal fold pathology diagnosis. EURASIP J. Audio Speech Music Process. 2015(1), 3 (2015)

    Article  Google Scholar 

  5. Ai, O.C., Hariharan, M., Yaacob, S., Chee, L.S.: Classification of speech dysfluencies with MFCC and LPCC features. Expert Syst. Appl. 39(2), 2157–2165 (2012)

    Article  Google Scholar 

  6. Majidnezhad, V., Kheidorov, I.: An ANN-based method for detecting vocal fold pathology. CoRR abs/1302.1772 (2013)

    Article  Google Scholar 

  7. Muda, L., Begam, M., Elamvazuthi, I.: Voice recognition algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) techniques. CoRR abs/1003.4083 (2010)

    Google Scholar 

  8. Kong, Y.Y., Mullangi, A., Kokkinakis, K.: Classification of fricative consonants for speech enhancement in hearing devices. PLOS ONE 9(4), 1–8 (2014)

    Article  Google Scholar 

  9. Miodońska, Z., Kręcichwost, M., Szymańska, A.: Computer-Aided Evaluation of Sibilants in Preschool Children Sigmatism Diagnosis, pp. 367–376. Springer International Publishing, Cham (2016)

    Google Scholar 

  10. Hu, W., Qian, Y., Soong, F.K., Wang, Y.: Improved mispronunciation detection with deep neural network trained acoustic models and transfer learning based logistic regression classifiers. Speech Commun. 67(Suppl. C), 154–166 (2015)

    Article  Google Scholar 

  11. Ali, S.M., Karule, P.T.: MFCC, LPCC, formants and pitch proven to be best features in diagnosis of speech disorder using neural networks and SVM. Int. J. Appl. Eng. Res. 11(2), 897–903 (2016)

    Google Scholar 

  12. Akbari, A., Arjmandi, M.K.: An efficient voice pathology classification scheme based on applying multi-layer linear discriminant analysis to wavelet packet-based features. Biomed. Signal Process. Control 10, 209–223 (2014)

    Article  Google Scholar 

  13. Bugdol, M.D., Bugdol, M.N., Lipowicz, A.M., Mitas, A.W., Bienkowska, M.J., Wijata, A.M.: Prediction of menarcheal status of girls using voice features. Computers in Biology and Medicine (2017)

    Google Scholar 

  14. El Hanine, M., Abdelmounim, E., Haddadi, R., Belaguid, A.: Electrocardiogram signal denoising using discrete wavelet transform. Comput. Technol. Appl. 5(2) (2014)

    Google Scholar 

  15. Król, D., Lorenc, A., Świcęiński, R .: Detecting laterality and nasality in speech with the use of a multi-channel recorder. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5147–5151, April 2015

    Google Scholar 

  16. Kręcichwost, M., Miodońska, Z., Trzaskalik, J., Pyttel, J., Spinczyk, D.: Acoustic Mask for Air Flow Distribution Analysis in Speech Therapy, pp. 377–387. Springer International Publishing, Cham (2016)

    Google Scholar 

  17. Miodonska, Z., Bugdol, M.D., Krecichwost, M.: Dynamic time warping in phoneme modeling for fast pronunciation error detection. Comput. Biol. Med. 69, 277–285 (2016)

    Article  Google Scholar 

  18. Srinivasan, V., Ramalingam, V., Arulmozhi, P.: Artificial neural network based pathological voice classification using MFCC features (2014)

    Google Scholar 

  19. Hossan, M.A., Memon, S., Gregory, M.A.: A novel approach for MFCC feature extraction. In: 2010 4th International Conference on Signal Processing and Communication Systems, pp. 1–5, December 2010

    Google Scholar 

  20. Korkko, P.: Spectral moments analysis of /s/ coarticulation development in Finnish-speaking children. paper 470

    Google Scholar 

  21. Ravan, M., Beheshti, S.: Speech recognition from adaptive windowing PSD estimation. In: 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 000524–000527, May 2011

    Google Scholar 

  22. Percival, D.B., Walden, A.T.: Spectral Analysis for Physical Applications. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  23. Hagan, M.T., Demuth, H.B., Beale, M.: Neural Network Design. PWS Publishing Co., Boston (1996)

    Google Scholar 

  24. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993)

    Article  Google Scholar 

  25. Ali, A.M.A., der Spiegel, J.V., Mueller, P.: Acoustic-phonetic features for the automatic classification of fricatives. J. Acoust. Soc. Am. 109(5), 2217–2235 (2001)

    Article  Google Scholar 

  26. Hanani, Abualsoud, A.: Automatic identification of articulation disorders for arabic children speakers. Birzeit University Open Access Repository (2016)

    Google Scholar 

Download references

Acknowledgement

The work has been partially financed by: Polish Ministry of Science and Silesian University of Technology statutory financial support for young researchers BKM-510/RAu-3/2017 and Faculty of Biomedical Engineering statutory financial support No. BK-209/RIB1/2018 (07/010/BK_18/0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Woloshuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Woloshuk, A., Kręcichwost, M., Miodońska, Z., Badura, P., Trzaskalik, J., Pietka, E. (2019). CAD of Sigmatism Using Neural Networks. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_23

Download citation

Publish with us

Policies and ethics