Skip to main content

Time Regarded Method of 3D Ultrasound Reconstruction

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 762))

Included in the following conference series:

  • 487 Accesses

Abstract

Ultrasound (US) examination is the most commonly used method for visualizing internal organs, and is usually used as a 2D visualisation method. Despite the fact that many ultrasound machines have ‘3D free hand’ protocols or they are equipped with a volumetric US probe, 3D volumetric reconstruction is popular mainly in obstetrics. 3D reconstruction and visualization of abdominal organs is difficult for two reasons. First – abdominal organs are large and the entire organ cannot be shown at once, and second – organs are moving. In this paper, a new approach to freehand 3D ultrasound reconstruction and visualisation is presented. The main idea of this approach is to not use all recorded data in the same time, but dynamically change the reconstruction model. Besides, typical order of the algorithm steps was changed. In the first step the segmentation is performed and in the second step the volume reconstruction is done. Usefulness of this approach was tested on Z-shaped phantom images. The median of error (RMSE) for obtained models is less than 0.41 mm with respect to the reference models. For the same data set the median RMSE for the standard reconstruction method (excluded the impact of registration time) is about 0.71 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcus, H.J., Pratt, P., Hughes-Hallett, A., Cundy, T.P., Marcus, A., Yang, G.Z., Darzi, A., Nandi, D.: Comparative effectiveness and safety of image guidance systems in neurosurgery: a preclinical randomized study. J. Neurosurg. 123(2), 307–313 (2015). https://doi.org/10.3171/2014.10.JNS141662

    Article  Google Scholar 

  2. Prada, F., Del Bene, M., Mattei, L., Casali, C., Filippini, A., Legnani, F., Mangraviti, A., Saladino, A., Perin, A., Richetta, C., Vetrano, I., Moiraghi, A., Saini, M., DiMeco, F.: Fusion imaging for intra-operative ultrasound-based navigation in neurosurgery. J. Ultrasound 17(3), 243–251 (2014). https://doi.org/10.1007/s40477-014-0111-8

    Article  Google Scholar 

  3. Letteboer, M.M.J., Willems, P.W.A., Viergever, M.A., Niessen, W.J.: Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans. Biomed. Eng. 52(2), 268–276 (2005). https://doi.org/10.1109/TBME.2004.840186

    Article  Google Scholar 

  4. Comeau, R.M., Sadikot, A.F., Fenster, A., Peters, T.M.: Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med. Phys. 27(4), 787–800 (2000). https://doi.org/10.1118/1.598942

    Article  Google Scholar 

  5. Lasso, A., Heffter, T., Rankin, A., Pinter, C., Ungi, T., Fichtinger, G.: PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans. Biomed. Eng. 61(10), 2527–2537 (2014). https://doi.org/10.1109/TBME.2014.2322864

    Article  Google Scholar 

  6. Czajkowska, J., Pyciński, B., Juszczyk, J., Pietka, E.: Biopsy needle tracking technique in US images. Comput. Med. Imaging Graph. 65, 93–101 (2017). https://doi.org/10.1016/j.compmedimag.2017.07.001

    Article  Google Scholar 

  7. Gobbi, D.G., Peters, T.M.: Interactive intra-operative 3D ultrasound reconstruction and visualization. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 2489, pp. 156–163 (2002). https://doi.org/10.1007/3-540-45787-9_20

    Chapter  Google Scholar 

  8. Rohling, R., Gee, A., Berman, L.: A comparison of freehand three-dimensional ultrasound reconstruction techniques. Med. Image Anal. 3(4), 339–359 (1999). https://doi.org/10.1016/S1361-8415(99)80028-0

    Article  Google Scholar 

  9. Wen, T., Yang, F., Gu, J., Chen, S., Wang, L., Xie, Y.: An adaptive kernel regression method for 3D ultrasound reconstruction using speckle prior and parallel GPU implementation. Neurocomputing 275, 208–223 (2017). https://doi.org/10.1016/j.neucom.2017.06.014

    Article  Google Scholar 

  10. Daoud, M.I., Alshalalfah, A.L., Al-Najar, M.: GPU accelerated implementation of kernel regression for freehand 3D ultrasound volume reconstruction. In: Biomedical Engineering and Sciences (IECBES), pp. 586–589 (2016). https://doi.org/10.1109/IECBES.2016.7843517

  11. Huang, Q.H., Zheng, Y.P.: Volume reconstruction of freehand three-dimensional ultrasound using median filters. Ultrasonics 48(3), 182–192 (2008). https://doi.org/10.1016/j.ultras.2007.11.005

    Article  Google Scholar 

  12. Solberg, O.V., Lindseth, F., Torp, H., Blake, R.E., Hernes, T.A.N.: Freehand 3D ultrasound reconstruction algorithms–a review. Ultrasound Med. Biol. 33(7), 991–1009 (2007). https://doi.org/10.1016/j.ultrasmedbio.2007.02.015

    Article  Google Scholar 

  13. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993). https://doi.org/10.1109/34.232073

    Article  Google Scholar 

  14. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: measuring errors between surfaces using the Hausdorff distance. In: Proceedings of the 2002 IEEE International Conference on Multimedia and Expo, ICME 2002, vol. 1, pp. 705–708 (2002). https://doi.org/10.1109/ICME.2002.1035879

  15. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  16. Pycinski, B., Czajkowska, J., Badura, P., Juszczyk, J., Pietka, E.: Time-of-flight camera, optical tracker and computed tomography in pairwise data registration. PloS One 11(7), e0159493 (2016). https://doi.org/10.1371/journal.pone.0159493

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Polish National Centre for Research and Development (NCBR) grant No.: STRATEGMED2/267398/4/NCBR/2015. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Juszczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Juszczyk, J., Galinska, M., Pietka, E. (2019). Time Regarded Method of 3D Ultrasound Reconstruction. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_18

Download citation

Publish with us

Policies and ethics