Skip to main content

Novel Geometric Technique of Ultrasound Probe Calibration

  • Conference paper
  • First Online:
  • 512 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 762))

Abstract

In the study a novel, simple and robust calibration technique of ultrasound probe for image-guided navigation systems has been proposed. The method employs a LEGO phantom with known geometry and is much simpler than other commonly used methods. Additionally, it requires only a single US image. The method was compared to the state-of-the-art method, which is based on a N-wire phantom. Obtained results show an improvement in accuracy and reproducibility between the state-of-the-art and the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amin, D., Kanade, T., Jaramaz, B., Digioia, A.M., Nikou, C., LaBarca, R., Moody, J.E.: Calibration method for determining the physical location of the ultrasound image plane. In: Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2001), Pittsburgh, PA (2001)

    Chapter  Google Scholar 

  2. Brendel, B., Winter, S., Ermert, H.: A simple and accurate calibration method for 3D freehand ultra-sound. Biomed. Tech. 49, 872–873 (2004)

    Google Scholar 

  3. Chen, T.K., Thurston, A.D., Ellis, R.E., Abolmaesumi, P.: A real-time freehand ultrasound calibration system with automatic accuracy feedback and control. Ultrasound Med. Biol. 35(1), 79–93 (2009). https://doi.org/10.1016/j.ultrasmedbio.2008.07.004

    Article  Google Scholar 

  4. Chen, X., Bao, N., Li, J., Kang, Y.: A review of surgery navigation system based on ultrasound guidance. In: 2012 IEEE International Conference on Information and Automation, pp. 882–886 (2012). https://doi.org/10.1109/ICInfA.2012.6246906

  5. Czajkowska, J., Pyciński, B., Piętka, E.: HoG feature based detection of tissue deformations in ultrasound data. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6326–6329. Institute of Electrical & Electronics Engineers (IEEE) (2015). https://doi.org/10.1109/embc.2015.7319839

  6. Detmer, P.R., Bashein, G., Hodges, T., Beach, K.W., Filer, E.P., Burns, D.H., Strandness, D.: 3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation. Ultrasound Med. Biol. 20(9), 923–936 (1994). https://doi.org/10.1016/0301-5629(94)90052-3

    Article  Google Scholar 

  7. Gee, A.H., Houghton, N.E., Treece, G.M., Prager, R.W.: A mechanical instrument for 3D ultrasound probe calibration. Ultrasound Med. Biol. 31(4), 505–518 (2005). https://doi.org/10.1016/j.ultrasmedbio.2004.12.022

    Article  Google Scholar 

  8. Hsu, P.W., Prager, R.W., Gee, A.H., Treece, G.M.: Freehand 3D ultrasound calibration: a review. In: Sensen, C.W., Hallgrímsson, B. (eds.) Advanced Imaging in Biology and Medicine, pp. 47–84. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-68993-5_3

  9. Huang, Q., Zheng, Y., Lu, M., Chi, Z.: Development of a portable 3D ultrasound imaging system for musculoskeletal tissues. Ultrasonics 43(3), 153–163 (2005). https://doi.org/10.1016/j.ultras.2004.05.003

    Article  Google Scholar 

  10. Lasso, A., Heffter, T., Rankin, A., Pinter, C., Ungi, T., Fichtinger, G.: Plus: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans. Biomed. Eng. 61(10), 2527–2537 (2014). https://doi.org/10.1109/TBME.2014.2322864

    Article  Google Scholar 

  11. Lindseth, F., Tangen, G.A., Langø, T., Bang, J.: Probe calibration for freehand 3-D ultrasound. Ultrasound Med. Biol. 29(11), 1607–1623 (2003). https://doi.org/10.1016/S0301-5629(03)01012-3

    Article  Google Scholar 

  12. Mercier, L., Langø, T., Lindseth, F., Collins, L.D.: A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med. Biol. 31(4), 449–471 (2005). https://doi.org/10.1016/j.ultrasmedbio.2004.11.015

    Article  Google Scholar 

  13. Najafi, M., Afsham, N., Abolmaesumi, P., Rohling, R.: A closed-form differential formulation for ultrasound spatial calibration: multi-wedge phantom. Ultrasound Med. Biol. 40(9), 2231–2243 (2014). https://doi.org/10.1016/j.ultrasmedbio.2014.03.006

    Article  Google Scholar 

  14. Prager, R., Rohling, R., Gee, A., Berman, L.: Rapid calibration for 3-D freehand ultrasound. Ultrasound Med. Biol. 24(6), 855–869 (1998). https://doi.org/10.1016/S0301-5629(98)00044-1

    Article  Google Scholar 

  15. Pyciński, B., Juszczyk, J., Bożek, P., Ciekalski, J., Dzielicki, J., Pietka, E.: Image navigation in minimally invasive surgery. In: Piętka, E., Kawa, J., Więcławek, W. (eds.) Information Technologies in Biomedicine Volume 4. Advances in Intelligent Systems and Computing, vol. 284, pp. 25–34. Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-06596-0_3

  16. Rousseau, F., Hellier, P., Barillot, C.: Confhusius: a robust and fully automatic calibration method for 3D freehand ultrasound. Med. Image Anal. 9(1), 25–38 (2005). https://doi.org/10.1016/j.media.2004.06.021

    Article  Google Scholar 

  17. Sato, Y., Nakamoto, M., Tamaki, Y., Sasama, T., Sakita, I., Nakajima, Y., Monden, M., Tamura, S.: Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization. IEEE Trans. Med. Imaging 17(5), 681–693 (1998). https://doi.org/10.1109/42.736019

    Article  Google Scholar 

  18. State, A., Chen, D., Tector, C., Brandt, A., Chen, H., Ohbuchi, R., Bajura, M., Fuchs, H.: Case study: observing a volume rendered fetus within a pregnant patient. In: Proceedings Visualization, pp. 364–368 (1994)

    Google Scholar 

  19. Walsh, R., Soehl, M., Rankin, A., Lasso, A., Fichtinger, G.: Design of a tracked ultrasound calibration phantom made of LEGO bricks. In: Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling (2014). https://doi.org/10.1117/12.2043533

  20. Welch, J.N., Johnson, J.A., Bax, M.R., Badr, R., Shahidi, R.: A real-time freehand 3D ultrasound system for image-guided surgery. In: 2000 IEEE Ultrasonics Symposium, Proceedings, An International Symposium (Cat. No. 00CH37121), vol. 2, pp. 1601–1604 (2000). https://doi.org/10.1109/ULTSYM.2000.921630

  21. Xiao, Y., Yan, C.X.B., Drouin, S., De Nigris, D., Kochanowska, A., Collins, D.L.: User-friendly freehand ultrasound calibration using lego bricks and automatic registration. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1703–1711 (2016). https://doi.org/10.1007/s11548-016-1368-5

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by the Polish National Science Centre (Narodowe Centrum Nauki) grant No.: UMO-2016/21/B/ST7/02236. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The authors would like to thank Mr. Andre Woloshuk B.Sc. for his valuable English language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Choroba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choroba, B., Pyciński, B., Kręcichwost, M., Spinczyk, D., Pietka, E. (2019). Novel Geometric Technique of Ultrasound Probe Calibration. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2018. Advances in Intelligent Systems and Computing, vol 762. Springer, Cham. https://doi.org/10.1007/978-3-319-91211-0_16

Download citation

Publish with us

Policies and ethics