Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 148))

Abstract

Scientific collaboration can be quantitatively studied by analyzing the structure and evolution of co-authorship networks. In this chapter we present a comprehensive overview of research studies focused on empirical analysis of co-authorship networks. Typical structural and evolutionary characteristics of co-authorship networks are identified by an aggregate analysis of examined studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At that time, Christopher Lee had the lowest closeness centrality in the collaboration network of Hollywood actors (a network frequently analyzed in complex network analysis literature).

References

  1. Abbasi, A., Chung, K.S.K., Hossain, L.: Egocentric analysis of co-authorship network structure, position and performance. Inf. Process. Manag. 48(4), 671–679 (2012). https://doi.org/10.1016/j.ipm.2011.09.001

    Article  Google Scholar 

  2. Abbasi, A., Hossain, L., Leydesdorff, L.: Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. J. Informetr. 6(3), 403–412 (2012). https://doi.org/10.1016/j.joi.2012.01.002

    Article  Google Scholar 

  3. Acedo, F.J., Barroso, C., Casanueva, C., Galn, J.L.: Co-authorship in management and organizational studies: an empirical and network analysis. J. Manag. Stud. 43(5), 957–983 (2006). https://doi.org/10.1111/j.1467-6486.2006.00625.x

    Article  Google Scholar 

  4. Amaral, L.A.N., Scala, A., Barthlmy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. 97(21), 11149–11152 (2000). https://doi.org/10.1073/pnas.200327197

    Article  Google Scholar 

  5. Arajo, E.B., Moreira, A.A., Furtado, V., Pequeno, T.H.C., Andrade Jr., J.S.: Collaboration networks from a large CV database: dynamics, topology and bonus impact. PLOS ONE 9(3), 1–7 (2014). https://doi.org/10.1371/journal.pone.0090537

    Article  Google Scholar 

  6. Badar, K., Hite, J.M., Badir, Y.F.: Examining the relationship of co-authorship network centrality and gender on academic research performance: the case of chemistry researchers in Pakistan. Scientometrics 94(2), 755–775 (2013). https://doi.org/10.1007/s11192-012-0764-z

    Article  Google Scholar 

  7. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

    Article  MathSciNet  MATH  Google Scholar 

  8. Barabási, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Phys. A 311, 590–614 (2002). https://doi.org/10.1016/S0378-4371(02)00736-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Barrat, A., Barthélemy, M., Vespignani, A.: Weighted evolving networks: coupling topology and weight dynamics. Phys. Rev. Lett. 92, 228701 (2004). https://doi.org/10.1103/PhysRevLett.92.228701

    Article  Google Scholar 

  10. Barrat, A., Barthlemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U. S. A. 101(11), 3747–3752 (2004). https://doi.org/10.1073/pnas.0400087101

    Article  Google Scholar 

  11. Batagelj, V., Mrvar, A.: Some analyses of Erdos collaboration graph. Soc. Netw. 22(2), 173–186 (2000). https://doi.org/10.1016/s0378-8733(00)00023-x

    Article  MathSciNet  Google Scholar 

  12. Bettencourt, L.M.A., Kaiser, D.I., Kaur, J.: Scientific discovery and topological transitions in collaboration networks. J. Informetr. 3(3), 210–221 (2009). https://doi.org/10.1016/j.joi.2009.03.001

    Article  Google Scholar 

  13. Bird, C., Barr, E., Nash, A., Devanbu, P., Filkov, V., Su, Z.: Structure and dynamics of research collaboration in computer science. In: Proceedings of the Ninth SIAM International Conference on Data Mining, pp. 826–837. SIAM (2009)

    Chapter  Google Scholar 

  14. Biryukov, M., Dong, C.: Analysis of computer science communities based on DBLP. In: Proceedings of the 14th European Conference on Research and Advanced Technology for Digital Libraries, ECDL’10, pp. 228–235. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  16. Bordons, M., Aparicio, J., González-Albo, B., Daz-Faes, A.A.: The relationship between the research performance of scientists and their position in co-authorship networks in three fields. J. Informetr. 9(1), 135–144 (2015). https://doi.org/10.1016/j.joi.2014.12.001

    Article  Google Scholar 

  17. Borner, K., Maru, J.T., Goldstone, R.L.: The simultaneous evolution of author and paper networks. Proc. Natl. Acad. Sci. U. S. A. 101(Suppl 1), 5266–5273 (2004). https://doi.org/10.1073/pnas.0307625100

    Article  Google Scholar 

  18. Brner, K., Dall’Asta, L., Ke, W., Vespignani, A.: Studying the emerging global brain: analyzing and visualizing the impact of co-authorship teams. Complexity 10(4), 57–67 (2005). https://doi.org/10.1002/cplx.20078

    Article  Google Scholar 

  19. Brunson, J.C., Fassino, S., McInnes, A., Narayan, M., Richardson, B., Franck, C., Ion, P., Laubenbacher, R.: Evolutionary events in a mathematical sciences research collaboration network. Scientometrics 99(3), 973–998 (2014). https://doi.org/10.1007/s11192-013-1209-z

    Article  Google Scholar 

  20. Cerinek, M., Batagelj, V.: Network analysis of Zentralblatt MATH data. Scientometrics, 1–25 (2014). https://doi.org/10.1007/s11192-014-1419-z

  21. Çavuşo glu, A., Türker, I.: Scientific collaboration network of Turkey. Chaos, Solitons and Fractals 57(0), 9–18 (2013). https://doi.org/10.1016/j.chaos.2013.07.022

    Article  Google Scholar 

  22. Çavuşo glu, A., Türker, I.: Patterns of collaboration in four scientific disciplines of the Turkish collaboration network. Phys. A Stat. Mech. Appl. 413(0), 220–229 (2014). https://doi.org/10.1016/j.physa.2014.06.069

    Article  Google Scholar 

  23. Chen, Y., Brner, K., Fang, S.: Evolving collaboration networks in scientometrics in 19782010: a micromacro analysis. Scientometrics 95(3), 1051–1070 (2013). https://doi.org/10.1007/s11192-012-0895-2

    Article  Google Scholar 

  24. Cheong, F., Corbitt, B.J.: A social network analysis of the co-authorship network of the Australasian conference of information systems from 1990 to 2006. In: 17th European Conference on Information Systems, ECIS 2009, Verona, Italy, pp. 292–303 (2009)

    Google Scholar 

  25. Cheong, F., Corbitt, B.J.: A social network analysis of the co-authorship network of the pacific Asia conference on information systems from 1993 to 2008. In: Pacific Asia Conference on Information Systems, PACIS 2009, Hyderabad, India, 10–12 July, p. 23 (2009)

    Google Scholar 

  26. Chinchilla-Rodríguez, Z., Ferligoj, A., Miguel, S., Kronegger, L., de Moya-Anegón, F.: Blockmodeling of co-authorship networks in library and information science in argentina: a case study. Scientometrics 93(3), 699–717 (2012). https://doi.org/10.1007/s11192-012-0794-6

    Article  Google Scholar 

  27. Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009). https://doi.org/10.1137/070710111

    Article  MathSciNet  Google Scholar 

  28. Cotta, C., Guervós, J.J.M.: Where is evolutionary computation going? a temporal analysis of the EC community. Genet. Program. Evolvable Mach. 8(3), 239–253 (2007). https://doi.org/10.1007/s10710-007-9031-0

    Article  Google Scholar 

  29. Cotta, C., Merelo, J.: The complex network of evolutionary computation authors: an initial study. Preprint available at http://arxiv.org/abs/physics/0507196 (2005)

    Google Scholar 

  30. Cugmas, M., Ferligoj, A., Kronegger, L.: The stability of co-authorship structures. Scientometrics 106(1), 163–186 (2016). https://doi.org/10.1007/s11192-015-1790-4

    Article  Google Scholar 

  31. Ding, Y.: Scientific collaboration and endorsement: Network analysis of co-authorship and citation networks. J. Informetr. 5(1), 187–203 (2011). https://doi.org/10.1016/j.joi.2010.008

    Article  Google Scholar 

  32. Divakarmurthy, P., Menezes, R.: The effect of citations to collaboration networks. In: Menezes, R., Evsukoff, A., Gonzlez, M.C. (eds.) Complex Networks. Studies in Computational Intelligence, vol. 424, pp. 177–185. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-30287-9_19

    Chapter  Google Scholar 

  33. Donetti, L., Muoz, M.A.: Detecting network communities: a new systematic and efficient algorithm. J. Stat. Mech. Theory Exp. 2004(10), P10012 (2004)

    Article  Google Scholar 

  34. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72, 027104 (2005). https://doi.org/10.1103/PhysRevE.72.027104

    Article  Google Scholar 

  35. Durbach, I.N., Naidoo, D., Mouton, J.: Co-authorship networks in South African chemistry and mathematics. S. Afr. J. Sci. 104(2), 487–492 (2008)

    Google Scholar 

  36. Elmacioglu, E., Lee, D.: On six degrees of separation in DBLP-DB and more. SIGMOD Rec. 34(2), 33–40 (2005). https://doi.org/10.1145/1083784.1083791

    Article  Google Scholar 

  37. Erdős, P.: On the fundamental problem of mathematics. Am. Math. Mon. 79(2), 149 (1972)

    Article  MathSciNet  Google Scholar 

  38. Erdős, P., Rnyi, A.: On random graphs. I. Publ. Math. Debr. 6, 290–297 (1959)

    Google Scholar 

  39. Erdős, P., Rnyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  Google Scholar 

  40. Eslami, H., Ebadi, A., Schiffauerova, A.: Effect of collaboration network structure on knowledge creation and technological performance: the case of biotechnology in Canada. Scientometrics 97(1), 99–119 (2013). https://doi.org/10.1007/s11192-013-1069-6

    Article  Google Scholar 

  41. Fan, Y., Li, M., Chen, J., Gao, L., Di, Z., Wu, J.: Network of econophysicists: a weighted network to investigate the development of econophysics. Int. J. Mod. Phys. B 18(17n19), 2505–2511 (2004). https://doi.org/10.1142/S0217979204025579

    Article  Google Scholar 

  42. Farkas, I., Ábel, D., Palla, G., Vicsek, T.: Weighted network modules. New J. Phys. 9(6), 180 (2007)

    Article  Google Scholar 

  43. Fatt, C.K., Ujum, E., Ratnavelu, K.: The structure of collaboration in the journal of finance. Scientometrics 85(3), 849–860 (2010). https://doi.org/10.1007/s11192-010-0254-0

    Article  Google Scholar 

  44. Ferligoj, A., Kronegger, L., Mali, F., Snijders, T.A., Doreian, P.: Scientific collaboration dynamics in a national scientific system. Scientometrics 104(3), 985–1012 (2015). https://doi.org/10.1007/s11192-015-1585-7

    Article  Google Scholar 

  45. Fischbach, K., Putzke, J., Schoder, D.: Co-authorship networks in electronic markets research. Electron. Mark. 21(1), 19–40 (2011). https://doi.org/10.1007/s12525-011-0051-5

    Article  Google Scholar 

  46. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(35), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  47. Franceschet, M.: Collaboration in computer science: a network science approach. J. Am. Soc. Inf. Sci. Technol. 62(10), 1992–2012 (2011). https://doi.org/10.1002/asi.21614

    Article  Google Scholar 

  48. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)

    Article  Google Scholar 

  49. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799

    Article  MathSciNet  Google Scholar 

  50. Goffman, C.: And what is your Erdős number? Am. Math. Mon. 76(7), 149 (1969)

    MATH  Google Scholar 

  51. Goh, K.I., Oh, E., Jeong, H., Kahng, B., Kim, D.: Classification of scale-free networks. Proc. Natl. Acad. Sci. U. S. A. 99, 12583–12588 (2002). https://doi.org/10.1073/pnas.202301299

    Article  MathSciNet  MATH  Google Scholar 

  52. Goh, K.I., Oh, E., Kahng, B., Kim, D.: Betweenness centrality correlation in social networks. Phys. Rev. E 67, 017101 (2003). https://doi.org/10.1103/PhysRevE.67.017101

    Article  Google Scholar 

  53. Gossart, C., Özman, M.: Co-authorship networks in social sciences: the case of turkey. Scientometrics 78(2), 323–345 (2009). https://doi.org/10.1007/s11192-007-1963-x

    Article  Google Scholar 

  54. Goyal, S., van der Leij, M.J., Moraga-Gonzales, J.L.: Economics: an emerging small world. J. Polit. Econ. 114(2), 403–412 (2006)

    Article  Google Scholar 

  55. Gregory, S.: An algorithm to find overlapping community structure in networks. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) Knowledge Discovery in Databases: PKDD 2007. Lecture Notes in Computer Science, vol. 4702, pp. 91–102. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-74976-9_12

    MATH  Google Scholar 

  56. Grossman, J.: The evolution of the mathematical research collaboration graph. Congr. Numer. 201–212 (2002)

    Google Scholar 

  57. Grossman, J.: Patterns of collaboration in mathematical research. SIAM News 35(9), 8–9 (2002)

    Google Scholar 

  58. Grossman, J.W.: In: Graham, R.L., Neetil, J., Butler, S. (eds.) Paul Erds: The Master of Collaboration. The Mathematics of Paul Erds II, pp. 489–496. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7254-4_27

  59. Grossman, J.W., Ion, P.D.F.: On a portion of the well known collaboration graph. Congr. Numer. 108, 129–131 (1995)

    MathSciNet  MATH  Google Scholar 

  60. Guimera, R., Uzzi, B., Spiro, J., Amaral, L.: Team assembly mechanisms determine collaboration network structure and team performance. Science 308(5722), 697–702 (2005). https://doi.org/10.1126/science.1106340

    Article  Google Scholar 

  61. Hassan, A.E., Holt, R.C.: The small world of software reverse engineering. In: 2013 20th Working Conference on Reverse Engineering (WCRE), vol. 0, pp. 278–283 (2004). https://doi.org/10.1109/WCRE.2004.37

  62. Horn, D.B., Finholt, T.A., Birnholtz, J.P., Motwani, D., Jayaraman, S.: Six degrees of jonathan grudin: a social network analysis of the evolution and impact of CSCW research. In: Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work, CSCW ’04, pp. 582–591. ACM, New York, NY, USA (2004). https://doi.org/10.1145/1031607.1031707

  63. Hou, H., Kretschmer, H., Liu, Z.: The structure of scientific collaboration networks in scientometrics. Scientometrics 75(2), 189–202 (2008). https://doi.org/10.1007/s11192-007-1771-3

    Article  Google Scholar 

  64. Huang, J., Zhuang, Z., Li, J., Giles, C.L.: Collaboration over time: characterizing and modeling network evolution. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, WSDM ’08, pp. 107–116. ACM, New York, NY, USA (2008). https://doi.org/10.1145/1341531.1341548

  65. Hui, Z., Cai, X., Greneche, J.M., Wang, Q.: Structure and collaboration relationship analysis in a scientific collaboration network. Chin. Sci. Bull. 56(34), 3702–3706 (2011). https://doi.org/10.1007/s11434-011-4756-9

    Article  Google Scholar 

  66. Johansson, F., Martenson, C., Svenson, P.: A social network analysis of the information fusion community. In: 2011 Proceedings of the 14th International Conference on Information Fusion (FUSION), pp. 1–8 (2011)

    Google Scholar 

  67. Karlovčec, M., Lužar, B., Mladenić, D.: Core-periphery dynamics in collaboration networks: the case study of slovenia. Scientometrics 109(3), 1561–1578 (2016). https://doi.org/10.1007/s11192-016-2154-4

    Article  Google Scholar 

  68. Kastrin, A., Klisara, J., Lužar, B., Povh, J.: Analysis of slovenian research community through bibliographic networks. Scientometrics 110(2), 791–813 (2017). https://doi.org/10.1007/s11192-016-2203-z

    Article  Google Scholar 

  69. Kim, J., Tao, L., Lee, S.H., Diesner, J.: Evolution and structure of scientific co-publishing network in korea between 1948–2011. Scientometrics 107(1), 27–41 (2016). https://doi.org/10.1007/s11192-016-1878-5

    Article  Google Scholar 

  70. Kronegger, L., Ferligoj, A., Doreian, P.: On the dynamics of national scientific systems. Qual. Quant. 45(5), 989–1015 (2011). https://doi.org/10.1007/s11135-011-9484-3

    Article  Google Scholar 

  71. Kronegger, L., Mali, F., Ferligoj, A., Doreian, P.: Collaboration structures in Slovenian scientific communities. Scientometrics 90(2), 631–647 (2012). https://doi.org/10.1007/s11192-011-0493-8

    Article  Google Scholar 

  72. Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press, Chicago (1970)

    Google Scholar 

  73. Lara-Cabrera, R., Cotta, C., Fernndez-Leiva, A.: An analysis of the structure and evolution of the scientific collaboration network of computer intelligence in games. Phys. A Stat. Mech. Appl. 395, 523–536 (2014). https://doi.org/10.1016/j.physa.2013.10.036

    Article  Google Scholar 

  74. Larivire, V., Gingras, Y., Archambault, É.: Canadian collaboration networks: a comparative analysis of the natural sciences, social sciences and the humanities. Scientometrics 68(3), 519–533 (2006). https://doi.org/10.1007/s11192-006-0127-8

    Article  Google Scholar 

  75. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05, pp. 177–187. ACM, New York, NY, USA (2005). https://doi.org/10.1145/1081870.1081893

  76. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), (2007). https://doi.org/10.1145/1217299.1217301

    Article  Google Scholar 

  77. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009). https://doi.org/10.1080/15427951.2009.10129177

    Article  MathSciNet  MATH  Google Scholar 

  78. Li, L., Li, X., Cheng, C., Chen, C., Ke, G., Zeng, D., Scherer, W.: Research collaboration and ITS topic evolution: 10 years at T-ITS. IEEE Trans. Intell. Transp. Syst. 11(3), 517–523 (2010). https://doi.org/10.1109/TITS.2010.2059070

    Article  Google Scholar 

  79. Liu, X., Bollen, J., Nelson, M.L., Van de Sompel, H.: Co-authorship networks in the digital library research community. Inf. Process. Manag. 41(6), 1462–1480 (2005). https://doi.org/10.1016/j.ipm.2005.03.012

    Article  Google Scholar 

  80. Lotka, A.J.: The frequency distribution of scientific production. J. Wash. Acad. Sci. 16, 317–323 (1926)

    Google Scholar 

  81. Luthi, L., Tomassini, M., Giacobini, M., Langdon, W.B.: The genetic programming collaboration network and its communities. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, pp. 1643–1650. ACM, New York, NY, USA (2007). https://doi.org/10.1145/1276958.1277284

  82. Lužar, B., Levnajić, Z., Povh, J., Perc, M.: Community structure and the evolution of interdisciplinarity in Slovenia’s scientific collaboration network. PLoS ONE 9(4), e94429 (2014). https://doi.org/10.1371/journal.pone.0094429

    Article  Google Scholar 

  83. Ma, F., Li, Y., Chen, B.: Study of the collaboration in the field of the Chinese humanities and social sciences. Scientometrics 100(2), 439–458 (2014). https://doi.org/10.1007/s11192-014-1301-z

    Article  Google Scholar 

  84. Martin, T., Ball, B., Karrer, B., Newman, M.E.J.: Co-authorship and citation patterns in the physical review. Phys. Rev. E 88, 012814 (2013). https://doi.org/10.1103/PhysRevE.88.012814

    Article  Google Scholar 

  85. Mena-Chalco, J.P., Digiampietri, L.A., Lopes, F.M., Cesar, R.M.: Brazilian bibliometric co-authorship networks. J. Assoc. Inf. Sci. Technol. 65(7), 1424–1445 (2014). https://doi.org/10.1002/asi.23010

    Article  Google Scholar 

  86. Milojević, S.: Modes of collaboration in modern science: beyond power laws and preferential attachment. J. Am. Soc. Inf. Sci. Technol. 61(7), 1410–1423 (2010). https://doi.org/10.1002/asi.v61:7

    Article  Google Scholar 

  87. Moody, J.: The structure of a social science collaboration network: disciplinary cohesion from 1963 to 1999. Am. Sociol. Rev. 69(2), 213–238 (2004). https://doi.org/10.1177/000312240406900204

    Article  Google Scholar 

  88. Nascimento, M.A., Sander, J., Pound, J.: Analysis of SIGMOD’s co-authorship graph. SIGMOD Rec. 32(3), 8–10 (2003). https://doi.org/10.1145/945721.945722

    Article  Google Scholar 

  89. Newman, M.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)

    Article  Google Scholar 

  90. Newman, M.: Co-authorship networks and patterns of scientific collaboration. Proc. Natl. Acad. Sci. 101(1), 5200–5205 (2004)

    Article  Google Scholar 

  91. Newman, M.E.J.: Scientific collaboration networks I: network construction and fundamental results. Phys. Rev. E 64, 016131 (2001). https://doi.org/10.1103/PhysRevE.64.016131

    Article  Google Scholar 

  92. Newman, M.E.J.: Scientific collaboration networks II: shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001). https://doi.org/10.1103/PhysRevE.64.016132

    Article  Google Scholar 

  93. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98(2), 404–409 (2001). https://doi.org/10.1073/pnas.98.2.404

    Article  MathSciNet  MATH  Google Scholar 

  94. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004). https://doi.org/10.1103/PhysRevE.69.066133

    Article  Google Scholar 

  95. Newman, M.E.J.: Who is the best connected scientist? A study of scientific co-authorship networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. Lecture Notes in Physics, vol. 650, pp. 337–370. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-44485-5_16

    Chapter  Google Scholar 

  96. Ochoa, X., Mndez, G., Duval, E.: Who we are: analysis of 10 years of the ED-MEDIA conference. In: Siemens, G., Fulford, C. (eds.) Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, pp. 189–200. AACE (2009)

    Google Scholar 

  97. Ortega, J.L.: Influence of co-authorship networks in the research impact: Ego network analyses from microsoft academic search. J. Informetr. 8(3), 728–737 (2014). https://doi.org/10.1016/j.joi.2014.07.001

    Article  Google Scholar 

  98. Osca-Lluch, J., Velasco, E., Lpez, M., Haba, J.: Co-authorship and citation networks in Spanish history of science research. Scientometrics 80(2), 373–383 (2009). https://doi.org/10.1007/s11192-008-2089-5

    Article  Google Scholar 

  99. Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the information sciences. J. Inf. Sci. 28(6), 441–453 (2002). https://doi.org/10.1177/016555150202800601

    Article  Google Scholar 

  100. Palla, G., Barabasi, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007). https://doi.org/10.1038/nature05670

    Article  Google Scholar 

  101. Pan, R.K., Saramki, J.: The strength of strong ties in scientific collaboration networks. EPL (Europhys. Lett.) 97(1), 18007 (2012)

    Article  Google Scholar 

  102. Pao, M.L.: An empirical examination of Lotka’s law. J. Am. Soc. Inf. Sci. 37(1), 26–33 (1986). https://doi.org/10.1002/asi.4630370105

    Article  Google Scholar 

  103. Perc, M.: Growth and structure of Slovenia’s scientific collaboration network. J. Informetr. 4(4), 475–482 (2010). https://doi.org/10.1016/j.joi.2010.04.003

    Article  MathSciNet  Google Scholar 

  104. Pham, M.C., Derntl, M., Klamma, R.: Development patterns of scientific communities in technology enhanced learning. Educ. Technol. Soc. 15(3), 323–335 (2012)

    Google Scholar 

  105. Pollner, P., Palla, G., Vicsek, T.: Preferential attachment of communities: the same principle, but a higher level. EPL (Europhys. Lett.) 73(3), 478 (2006). https://doi.org/10.1209/epl/i2005-10414-6

    Article  MathSciNet  Google Scholar 

  106. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006). https://doi.org/10.1007/11569596_31

    Article  MathSciNet  Google Scholar 

  107. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007). https://doi.org/10.1103/PhysRevE.76.036106

    Article  Google Scholar 

  108. Ramasco, J.J., Dorogovtsev, S.N., Pastor-Satorras, R.: Self-organization of collaboration networks. Phys. Rev. E 70, 036106 (2004). https://doi.org/10.1103/PhysRevE.70.036106

    Article  Google Scholar 

  109. Reinhardt, W., Meier, C., Drachsler, H., Sloep, P.: Analyzing 5 years of EC-TEL proceedings. In: Kloos, C.D., Gillet, D., Crespo Garca, R.M., Wild, F., Wolpers, M. (eds.) Towards Ubiquitous Learning. Lecture Notes in Computer Science, vol. 6964, pp. 531–536. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-23985-4_51

    Chapter  Google Scholar 

  110. Rivellini, G., Rizzi, E., Zaccarin, S.: The science network in Italian population research: an analysis according to the social network perspective. Scientometrics 67(3), 407–418 (2006). https://doi.org/10.1556/Scient.67.2006.3.5

    Article  Google Scholar 

  111. Savić, M., Ivanović, M., Radovanović, M., Ognjanović, Z., Pejović, A., Kruger, T.J.: The structure and evolution of scientific collaboration in Serbian mathematical journals. Scientometrics 101(3), 1805–1830 (2014). https://doi.org/10.1007/s11192-014-1295-6

    Article  Google Scholar 

  112. Savić, M., Ivanović, M., Radovanović, M., Ognjanović, Z., Pejović, A., Kruger, T.J.: Exploratory analysis of communities in co-authorship networks: a case study. In: Bogdanova, A.M., Gjorgjevikj, D. (eds.) ICT Innovations 2014. Advances in Intelligent Systems and Computing, vol. 311, pp. 55–64. Springer International Publishing, Berlin (2015). https://doi.org/10.1007/978-3-319-09879-1_6

    Google Scholar 

  113. Schubert, A.: A Hirsch-type index of co-author partnership ability. Scientometrics 91(1), 303–308 (2012). https://doi.org/10.1007/s11192-011-0559-7

    Article  Google Scholar 

  114. Shi, Q., Xu, B., Xu, X., Xiao, Y., Wang, W., Wang, H.: Diversity of social ties in scientific collaboration networks. Phys. A Stat. Mech. Appl. 390(2324), 4627–4635 (2011). https://doi.org/10.1016/j.physa.2011.06.072

    Article  MathSciNet  Google Scholar 

  115. Smeaton, A.F., Keogh, G., Gurrin, C., McDonald, K., Sødring, T.: Analysis of papers from twenty-five years of SIGIR conferences: What have we been doing for the last quarter of a century? SIGIR Forum 37(1), 49–53 (2003). https://doi.org/10.1145/945546.945550

    Article  Google Scholar 

  116. Staudt, C., Schumm, A., Meyerhenke, H., Görke, R., Wagner, D.: Static and dynamic aspects of scientific collaboration networks. In: International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012, Istanbul, Turkey, 26–29 August 2012, pp. 522–526 (2012). https://doi.org/10.1109/ASONAM.2012.90

  117. Stefano, D.D., Fuccella, V., Vitale, M.P., Zaccarin, S.: The use of different data sources in the analysis of co-authorship networks and scientific performance. Soc. Netw. 35(3), 370–381 (2013). https://doi.org/10.1016/j.socnet.2013.04.004

    Article  Google Scholar 

  118. Tang, J., Jin, R., Zhang, J.: A topic modeling approach and its integration into the random walk framework for academic search. In: Eighth IEEE International Conference on Data Mining, ICDM ’08, pp. 1055–1060 (2008). https://doi.org/10.1109/ICDM.2008.71

  119. Tomasini, M., Luthi, L.: Empirical analysis of the evolution of a scientific collaboration network. Phys. A Stat. Mech. Appl. 385(2), 750 – 764 (2007). https://doi.org/10.1016/j.physa.2007.07.028

  120. Tomassini, M., Luthi, L., Giacobini, M., Langdon, W.: The structure of the genetic programming collaboration network. Genet. Program. Evolvable Mach. 8(1), 97–103 (2007). https://doi.org/10.1007/s10710-006-9018-2

    Article  Google Scholar 

  121. Uddin, S., Hossain, L., Abbasi, A., Rasmussen, K.: Trend and efficiency analysis of co-authorship network. Scientometrics 90(2), 687–699 (2012). https://doi.org/10.1007/s11192-011-0511-x

    Article  Google Scholar 

  122. Uddin, S., Hossain, L., Rasmussen, K.: Network effects on scientific collaborations. PLoS ONE 8(2), e57546 (2013). https://doi.org/10.1371/journal.pone.0057546

    Article  Google Scholar 

  123. Velden, T., Haque, A.u., Lagoze, C.: A new approach to analyzing patterns of collaboration in co-authorship networks: mesoscopic analysis and interpretation. Scientometrics 85(1), 219–242 (2010). https://doi.org/10.1007/s11192-010-0224-6

    Article  Google Scholar 

  124. Vidgen, R.T., Henneberg, S., Naudé, P.: What sort of community is the European conference on information systems? A social network analysis 1993–2005. Eur. J. Inf. Syst. 16(1), 5–19 (2007). https://doi.org/10.1057/palgrave.ejis.3000661

    Article  Google Scholar 

  125. Voos, H.: Lotka and information science. J. Am. Soc. Inf. Sci. 25(4), 270–272 (1974). https://doi.org/10.1002/asi.4630250410

    Article  Google Scholar 

  126. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 409–10 (1998). https://doi.org/10.1038/30918

    Article  Google Scholar 

  127. Xu, J.J., Chau, M.: The social identity of IS: analyzing the collaboration network of the ICIS conferences (1980-2005). In: Proceedings of the International Conference on Information Systems, ICIS 2006, Milwaukee, Wisconsin, USA, 10–13 December 2006, p. 39 (2006)

    Google Scholar 

  128. Yan, E., Ding, Y.: Applying centrality measures to impact analysis: a co-authorship network analysis. J. Am. Soc. Inf. Sci. Technol. 60(10), 2107–2118 (2009). https://doi.org/10.1002/asi.21128

    Article  Google Scholar 

  129. Yan, E., Ding, Y., Zhu, Q.: Mapping library and information science in China: a co-authorship network analysis. Scientometrics 83(1), 115–131 (2010). https://doi.org/10.1007/s11192-009-0027-9

    Article  Google Scholar 

  130. Yang, J., Leskovec, J.: Structure and overlaps of ground-truth communities in networks. ACM Trans. Intell. Syst. Technol. 5(2), 26:1–26:35 (2014). https://doi.org/10.1145/2594454

    Article  Google Scholar 

  131. Yoshikane, F., Kageura, K.: Comparative analysis of co-authorship networks of different domains: the growth and change of networks. Scientometrics 60(3), 435–446 (2004). https://doi.org/10.1023/B:SCIE.0000034385.05897.46

    Article  Google Scholar 

  132. Zhai, L., Li, X., Yan, X., Fan, W.: Evolutionary analysis of collaboration networks in the field of information systems. Scientometrics 1–21 (2014). https://doi.org/10.1007/s11192-014-1360-1

  133. Zhai, L., Yan, X., Shibchurn, J., Song, X.: Evolutionary analysis of international collaboration network of Chinese scholars in management research. Scientometrics 98(2), 1435–1454 (2014). https://doi.org/10.1007/s11192-013-1040-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Savić .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savić, M., Ivanović, M., Jain, L.C. (2019). Analysis of Co-authorship Networks. In: Complex Networks in Software, Knowledge, and Social Systems. Intelligent Systems Reference Library, vol 148. Springer, Cham. https://doi.org/10.1007/978-3-319-91196-0_7

Download citation

Publish with us

Policies and ethics