Analysis of Ontology Networks

  • Miloš SavićEmail author
  • Mirjana Ivanović
  • Lakhmi C. Jain
Part of the Intelligent Systems Reference Library book series (ISRL, volume 148)


In computer and information sciences, an ontology is, in its essence, a named set of axioms encoding a network of relationships and dependencies between ontological entities present in a knowledge domain. With the rise of Semantic Web technologies, real-world ontologies have become considerably large leading to complex ontology networks. In this chapter we firstly present an overview of previous research works dealing with analysis of ontology networks. Nodes of ontology networks can be enriched with various metrics reflecting complexity and quality attributes of corresponding ontological entities. On a case study involving one large-scale modularized ontology, we demonstrate that analysis of enriched ontology networks can help ontology engineers not only to understand the structural complexity of ontologies, but also to evaluate their quality with respect to well-established modular design principles.


  1. 1.
    Alani, H., Brewster, C.: Ontology ranking based on the analysis of concept structures. In: Proceedings of the 3rd International Conference on Knowledge Capture, K-CAP ’05, pp. 51–58. ACM, New York, NY, USA (2005).
  2. 2.
    Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with AKTiveRank. In: Proceedings of the 5th International Conference on The Semantic Web, ISWC’06, pp. 1–15. Springer, Berlin (2006). Scholar
  3. 3.
    Alani, H., Dasmahapatra, S., O’Hara, K., Shadbolt, N.: Identifying communities of practice through ontology network analysis. IEEE Intell. Syst. 18(2), 18–25 (2003). Scholar
  4. 4.
    Bao, J., Caragea, D., Honavar, V.: On the semantics of linking and importing in modular ontologies. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.), The Semantic Web - ISWC 2006. Lecture Notes in Computer Science, vol. 4273, pp. 72–86. Springer, Berlin (2006). Scholar
  5. 5.
    Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle, D., Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Stumme, G., Sure, Y., Tane, J., Volz, R., Zacharias, V.: Kaon - towards a large scale semantic web. In: Proceedings of the Third International Conference on E-Commerce and Web Technologies, EC-WEB ’02, pp. 304–313. Springer, London (2002)CrossRefGoogle Scholar
  6. 6.
    Caraballo, A.A.M., Nunes, B.P., Lopes, G.R., Leme, L.A.P.P., Casanova, M.A.: Automatic Creation and Analysis of a Linked Data Cloud Diagram, pp. 417–432. Springer International Publishing, Cham (2016). Scholar
  7. 7.
    Cheng, G., Qu, Y.: Term dependence on the semantic web. In: Proceedings of the 7th International Conference on The Semantic Web, ISWC ’08, pp. 665–680. Springer, Berlin (2008). Scholar
  8. 8.
    Cheng, G., Ge, W., Qu, Y.: Falcons: Searching and browsing entities on the semantic web. In: Proceedings of the 17th International Conference on World Wide Web, WWW ’08, pp. 1101–1102. ACM, New York, NY, USA (2008).
  9. 9.
    Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009). Scholar
  10. 10.
    Coskun, G., Rothe, M., Teymourian, K., Paschke, A.: Applying community detection algorithms on ontologies for identifying concept groups. In: Kutz, O., Schneider, T. (eds.) Workshop on Modular Ontologies, vol. 230, pp. 12–24. IOS Press (2011).
  11. 11.
    Cuenca Grau, B., Parsia, B., Sirin, E.: Ontology integration using e-connections. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. Lecture Notes in Computer Science, vol. 5445, pp. 293–320. Springer, Berlin (2009). Scholar
  12. 12.
    d’Aquin, M.: Modularizing Ontologies, pp. 213–233. Springer, Berlin (2012). Scholar
  13. 13.
    Ding, L., Shinavier, J., Shangguan, Z., McGuinness, D.: SameAs Networks and Beyond: analyzing deployment status and implications of owl:sameAs in linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) The Semantic Web ISWC 2010. Lecture Notes in Computer Science, vol. 6496, pp. 145–160. Springer, Berlin (2010). Scholar
  14. 14.
    Ensan, F., Du, W.: A knowledge encapsulation approach to ontology modularization. Knowl. Inf. Syst. 26(2), 249–283 (2011). Scholar
  15. 15.
    Ensan, F., Du, W.: A semantic metrics suite for evaluating modular ontologies. Inf. Syst. 38(5), 745–770 (2013). Scholar
  16. 16.
    Färber, M., Rettinger, A.: A statistical comparison of current knowledge bases. In: Joint Proceedings of the Posters and Demos Track of 11th International Conference on Semantic Systems - SEMANTiCS 2015 and 1st Workshop on Data Science: Methods, Technology and Applications (DSci15), pp. 18–21 (2015).
  17. 17.
    Fernândez, J.D., Martînez-Prieto, M.A., de la Fuente Redondo, P., Gutiêrrez, C.: Characterising rdf data sets. J. Inf. Sci. (2017).
  18. 18.
    García, J., García-Peñalvo, F.J., Therón, R.: A Survey on Ontology Metrics, pp. 22–27. Springer, Berlin (2010). Scholar
  19. 19.
    Garlaschelli, D., Loffredo, M.: Patterns of link reciprocity in directed networks. Phys. Rev. Lett. 93, 268,701 (2004).
  20. 20.
    Ge, W., Chen, J., Hu, W., Qu, Y.: Object link structure in the semantic web. In: Aroyo, L., Antoniou, G., Hyvnen, E., ten Teije,A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) The Semantic Web: Research and Applications. Lecture Notes in Computer Science, vol. 6089, pp. 257–271. Springer, Berlin (2010). Scholar
  21. 21.
    Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubzy, M., Eriksson, H., Noy, N.F., Tu, S.W.: The evolution of Protégé: an environment for knowledge-based systems development. Int. J. Hum.-Comput. Stud. 58(1), 89 – 123 (2003). Scholar
  22. 22.
    Gil, R., Garca, R., Delgado, J.: Measuring the semantic web. AIS SIGSEMIS Bull. 1(2), 69–72 (2004)Google Scholar
  23. 23.
    Guéret, C., Groth, P., van Harmelen, F., Schlobach, S.: Finding the achilles heel of the web of data: Using network analysis for link-recommendation. In: Proceedings of the 9th International Semantic Web Conference on the Semantic Web - Volume Part I, ISWC’10, pp. 289–304. Springer, Berlin (2010)Google Scholar
  24. 24.
    Guéret, C., Wang, S., Schlobach, S.: The web of data is a complex system - first insight into its multi-scale network properties. In: The European Conference on Complex Systems, ECCS 2010, pp. 1–12 (2010)Google Scholar
  25. 25.
    Guéret, C., Wang, S., Groth, P., Schlobach, S.: Multi-scale analysis of the web of data: a challenge to the complex system’s community. Adv. Complex Syst. 14(04), 587–609 (2011). Scholar
  26. 26.
    Halstead, M.H.: Elements of Software Science (Operating and Programming Systems Series). Elsevier Science Inc., New York (1977)zbMATHGoogle Scholar
  27. 27.
    Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE Trans. Softw. Eng. SE-7(5), 510–518 (1981). Scholar
  28. 28.
    Hoser, B., Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Semantic network analysis of ontologies. In: Proceedings of the 3rd European Conference on The Semantic Web: Research and Applications, ESWC’06, pp. 514–529. Springer, Berlin (2006). Scholar
  29. 29.
    Luczak-Rösch, M., Tolksdorf, R.: On the topology of the web of data. In: Proceedings of the 24th ACM Conference on Hypertext and Social Media, HT ’13, pp. 253–257. ACM, New York, NY, USA (2013).
  30. 30.
    Ma, J., Chen, H.: Complex network analysis on TCMLS sub-ontologies. In: Third International Conference on Semantics, Knowledge and Grid, pp. 551–553 (2007).
  31. 31.
    McBride, B.: Jena: a semantic web toolkit. IEEE Internet Comput. 6(6), 55–59 (2002). Scholar
  32. 32.
    McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320 (1976). Scholar
  33. 33.
    Mrvar, A., Batagelj, V.: Analysis and visualization of large networks with program package Pajek. Complex Adapt. Syst. Model. 4(1), 6 (2016).
  34. 34.
    Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.: Creating semantic web contents with Protégé-2000. IEEE Intell. Syst. 16(2), 60–71 (2001). Scholar
  35. 35.
    Oh, S., Yeom, H.Y., Ahn, J.: Cohesion and coupling metrics for ontology modules. Inf. Technol. Manag. 12(2), 81–96 (2011). Scholar
  36. 36.
    Orme, A., Tao, H., Etzkorn, L.: Coupling metrics for ontology-based system. IEEE Softw. 23(2), 102–108 (2006). Scholar
  37. 37.
    Queiroz-Sousa, P.O., Salgado, A.C., Pires, C.E.S.: A method for building personalized ontology summaries. J. Inf. Data Manag. 4(3), 236–250 (2013)Google Scholar
  38. 38.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. 101(9), 2658–2663 (2004). Scholar
  39. 39.
    Rakić, G.: Extendable and adaptable framework for input language independent static analysis. Ph.D. thesis, University of Novi Sad, Faculty of Sciences (2015)Google Scholar
  40. 40.
    Rakić, G., Budimac, Z.: Introducing enriched concrete syntax trees. In: Proceedings of the 14th International Multiconference on Information Society (IS), Collaboration, Software And Services In Information Society (CSS), pp. 211–214 (2011)Google Scholar
  41. 41.
    Raskin, R.G., Pan, M.J.: Knowledge representation in the semantic web for Earth and environmental terminology (SWEET). Comput. Geosci. 31(9), 1119–1125 (2005). Scholar
  42. 42.
    Rodriguez, M.A.: A graph analysis of the linked data cloud. CoRR (2009). arXiv:abs/0903.0194
  43. 43.
    Savić, M., Budimac, Z., Rakić, G., Ivanović, M., Heričko, M.: SSQSA ontology metrics front-end. In: Proceedings of the 2nd Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications, Novi Sad, Serbia, September 15–17, 2013, pp. 95–101 (2013).
  44. 44.
    Savić, M., Rakić, G., Budimac, Z.: Translation of Tempura specifications to eCST. AIP Conf. Proc. 1738(1), 240,009 (2016).
  45. 45.
    Sicilia, M., Rodrguez, D., Garca-Barriocanal, E., Sinchez-Alonso, S.: Empirical findings on ontology metrics. Expert Syst. Appl. 39(8), 6706 – 6711 (2012). Scholar
  46. 46.
    Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization. Lecture Notes in Computer Science, vol. 5445. Springer, Berlin (2009). Scholar
  47. 47.
    Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA: Metric-based ontology quality analysis. In: IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources (2005)Google Scholar
  48. 48.
    Theoharis, Y., Georgakopoulos, G., Christophides, V.: On the synthetic generation of semantic web schemas. In: Christophides, V., Collard, M., Gutierrez, C. (eds.) Semantic Web, Ontologies and Databases. Lecture Notes in Computer Science, vol. 5005, pp. 98–116. Springer, Berlin (2008).
  49. 49.
    Theoharis, Y., Tzitzikas, Y., Kotzinos, D., Christophides, V.: On graph features of semantic web schemas. IEEE Trans. Knowl. Data Eng. 20(5), 692–702 (2008). Scholar
  50. 50.
    Vrandečić, D.: Ontology Evaluation, pp. 293–313. Springer, Berlin (2009). Scholar
  51. 51.
    Zhang, H.: The scale-free nature of semantic web ontology. In: Proceedings of the 17th International Conference on World Wide Web, WWW ’08, pp. 1047–1048. ACM, New York, NY, USA (2008).
  52. 52.
    Zhang, H., Li, Y.F., Tan, H.B.K.: Measuring design complexity of semantic web ontologies. J. Syst. Softw. 83(5), 803–814 (2010). Scholar
  53. 53.
    Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence graph. In: Proceedings of the 16th International Conference on World Wide Web, WWW ’07, pp. 707–716. ACM, New York, NY, USA (2007).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Miloš Savić
    • 1
    Email author
  • Mirjana Ivanović
    • 1
  • Lakhmi C. Jain
    • 2
  1. 1.Faculty of Sciences, Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia
  2. 2.Centre for Artificial Intelligence, Faculty of Engineering and Information TechnologyUniversity of Technology SydneySydneyAustralia

Personalised recommendations