A Novel, Lightweight, and Cost-Effective Mechanism to Secure the Sensor-Gateway Communication in IoT

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 765)

Abstract

Ensuring highest degree of resistance against potential adversaries in Internet-of-Thing (IoT) is still an open challenge, and the prime reason behind this is the computational complexities associated with designing security algorithms and its corresponding transformation between the cloud and Wireless Sensor Network (WSN) via gateway node. Hence, the proposed system develops a lightweight and highly responsive encryption technique to offer minimal resource consumption from the resource-constraint sensor nodes. The significant contribution is also to introduce a novel bootstrapping key mechanism with the unique generation of the secret key to maintain both forward and backward secrecy. The study outcome shows that proposed system is highly practical to offer reduced resource consumption and faster algorithm processing time in the presence of dynamic scenario of IoT.

Keywords

Internet-of-Things (IoT) Wireless Sensor Network Security Privacy Encryption Secret key Key management 

References

  1. 1.
    Dawson, M., Eltayeb, M., Omar, M.: Security Solutions for Hyperconnectivity and the Internet of Things. IGI Global, Hershey (2016)Google Scholar
  2. 2.
    Gravina, R., Palau, C.E., Manso, M., Liotta, A., Fortino, G.: Integration, Interconnection, and Interoperability of IoT Systems. Springer (2017)Google Scholar
  3. 3.
    Khan, S., Pathan, A.S.K., Alrajeh, N.A.: Wireless Sensor Networks: Current Status and Future Trends. CRC Press, Boca Raton (2016)Google Scholar
  4. 4.
    Selmic, R.R., Phoha, V.V., Serwadda, A.: Wireless Sensor Networks: Security, Coverage, and Localization. Springer (2016)CrossRefGoogle Scholar
  5. 5.
    Gilchrist, A.: IoT Security Issues. Walter de Gruyter GmbH (2016)Google Scholar
  6. 6.
    Riddle, A.R., Chung, S.M.: A survey on the security of hypervisors in cloud computing. In: 2015 IEEE 35th International Conference on Distributed Computing Systems Workshops, Columbus, OH, pp. 100–104 (2015)Google Scholar
  7. 7.
    He, D., Zeadally, S., Kumar, N., Wu, W.: Efficient and anonymous mobile user authentication protocol using self-certified public key cryptography for multi-server architectures. IEEE Trans. Inf. Forensics Secur. 11(9), 2052–2064 (2016)CrossRefGoogle Scholar
  8. 8.
    Krejčí, R., Hujňák, O., Švepeš, M.: Security survey of the IoT wireless protocols. In: 2017 25th Telecommunication Forum (TELFOR), Belgrade, Serbia, pp. 1–4 (2017)Google Scholar
  9. 9.
    Shim, K.A.: A survey of public-key cryptographic primitives in wireless sensor networks. IEEE Commun. Surv. Tutor. 18(1), 577–601 (2016)CrossRefGoogle Scholar
  10. 10.
    Kiviharju, M.: On the fog of RSA key lengths: verifying public key cryptography strength recommendations. In: 2017 International Conference on Military Communications and Information Systems (ICMCIS), Oulu, pp. 1–8 (2017)Google Scholar
  11. 11.
    Wang, J., Hong, Z., Zhang, Y., Jin, Y.: Enabling security-enhanced attestation with Intel SGX for remote terminal and IoT. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 37(1), 88–96 (2018)CrossRefGoogle Scholar
  12. 12.
    Dao, N.N., Kim, Y., Jeong, S., Park, M., Cho, S.: Achievable multi-security levels for lightweight IoT-enabled devices in infrastructureless peer-aware communications. IEEE Access 5, 26743–26753 (2017)CrossRefGoogle Scholar
  13. 13.
    Hossain, M.S., Muhammad, G., Rahman, S.M.M., Abdul, W., Alelaiwi, A., Alamri, A.: Toward end-to-end biomet rics-based security for IoT infrastructure. IEEE Wirel. Commun. 23(5), 44–51 (2016)CrossRefGoogle Scholar
  14. 14.
    Tiburski, R.T., Amaral, L.A., de Matos, E., de Azevedo, D.F.G., Hessel, F.: The role of lightweight approaches towards the standardization of a security architecture for IoT middleware systems. IEEE Commun. Mag. 54(12), 56–62 (2016)CrossRefGoogle Scholar
  15. 15.
    Xu, Q., Ren, P., Song, H., Du, Q.: Security enhancement for IoT communications exposed to eavesdroppers with uncertain locations. IEEE Access 4, 2840–2853 (2016)CrossRefGoogle Scholar
  16. 16.
    Giuliano, R., Mazzenga, F., Neri, A., Vegni, A.M.: Security access protocols in IoT capillary networks. IEEE Internet Things J. 4(3), 645–657 (2017)CrossRefGoogle Scholar
  17. 17.
    Cheng, S.M., Chen, P.Y., Lin, C.C., Hsiao, H.C.: Traffic-aware patching for cyber security in mobile IoT. IEEE Commun. Mag. 55(7), 29–35 (2017)CrossRefGoogle Scholar
  18. 18.
    Sedjelmaci, H., Senouci, S.M., Taleb, T.: An accurate security game for low-resource IoT devices. IEEE Trans. Veh. Technol. 66(10), 9381–9393 (2017)CrossRefGoogle Scholar
  19. 19.
    Chin, W.L., Li, W., Chen, H.H.: Energy big data security threats in IoT-based smart grid communications. IEEE Commun. Mag. 55(10), 70–75 (2017)CrossRefGoogle Scholar
  20. 20.
    Trappe, W., Howard, R., Moore, R.S.: Low-energy security: limits and opportunities in the Internet of Things. IEEE Secur. Priv. 13(1), 14–21 (2015)CrossRefGoogle Scholar
  21. 21.
    Kumar, S.D., Thapliyal, H., Mohammad, A.: FinSAL: FinFET-based secure adiabatic logic for energy-efficient and DPA resistant IoT devices. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 37(1), 110–122 (2018)CrossRefGoogle Scholar
  22. 22.
    Wolf, M., Serpanos, D.: Safety and security in cyber-physical systems and Internet-of-Things systems. Proc. IEEE 106(1), 9–20 (2018)CrossRefGoogle Scholar
  23. 23.
    Burg, A., Chattopadhyay, A., Lam, K.Y.: Wireless communication and security issues for cyber-physical systems and the Internet-of-Things. Proc. IEEE 106(1), 38–60 (2018)CrossRefGoogle Scholar
  24. 24.
    Ruan, O., Chen, J., Zhang, M.: Provably leakage-resilient password-based authenticated key exchange in the standard model. IEEE Access 5, 26832–26841 (2017)CrossRefGoogle Scholar
  25. 25.
    López, A.B.O., Encinas, L.H., Muñoz, A.M., Vitini, F.M.: A lightweight pseudorandom number generator for securing the Internet of Things. IEEE Access 5, 27800–27806 (2017)CrossRefGoogle Scholar
  26. 26.
    Mohsin, M., Sardar, M.U., Hasan, O., Anwar, Z.: IoTRiskAnalyzer: a probabilistic model checking based framework for formal risk analytics of the Internet of Things. IEEE Access 5, 5494–5505 (2017)CrossRefGoogle Scholar
  27. 27.
    Xu, G., Cao, Y., Ren, Y., Li, X., Feng, Z.: Network security situation awareness based on semantic ontology and user-defined rules for Internet of Things. IEEE Access 5, 21046–21056 (2017)CrossRefGoogle Scholar
  28. 28.
    Ambrosin, M., et al.: On the feasibility of attribute-based encryption on Internet of Things devices. IEEE Micro 36(6), 25–35 (2016)CrossRefGoogle Scholar
  29. 29.
    Premnath, S.N., Haas, Z.J.: Security and privacy in the Internet-of-Things under time-and-budget-limited adversary model. IEEE Wirel. Commun. Lett. 4(3), 277–280 (2015)CrossRefGoogle Scholar
  30. 30.
    Ko, H., Jin, J., Keoh, S.L.: Secure service virtualization in IoT by dynamic service dependency verification. IEEE Internet Things J. 3(6), 1006–1014 (2016)CrossRefGoogle Scholar
  31. 31.
    Zhao, G., Si, X., Wang, J., Long, X., Hu, T.: A novel mutual authentication scheme for Internet of Things. In: Proceedings of 2011 International Conference on Modelling, Identification and Control, Shanghai, pp. 563–566 (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringDr. AITBengaluruIndia
  2. 2.Department of Computer Science and EngineeringSITTumkurIndia

Personalised recommendations