Advertisement

Modelling and Identification of Magnetic Levitation Model CE 152/Revised

  • Daniel Honc
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 765)

Abstract

Paper describes procedure of first principle modelling and experimental identification of Magnetic Levitation Model CE 152. Author optimized and simplified dynamical model to a minimum what is needed to characterize given system for the simulation and control design purposes. Only few experiments are needed to estimate the unknown parameters. Model quality is verified in the feedback control loop where the real and simulated data are compared.

Keywords

Magnetic levitation Maglev First principle model Experimental identification Verification Feedback control 

Notes

Acknowledgments

This research was supported by Institutional support of The Ministry of Education, Youth and Sports of the Czech Republic at FEI.

References

  1. 1.
    CE152 – Experiment, Magnetic Levitation Model. https://www.tecquipment.com/magnetic-levitation-model
  2. 2.
    Bächle, T., Hentzelt, S., Graichen, K.: Nonlinear model predictive control of a magnetic levitation system. Control Eng. Pract. 21(9), 1178–1187 (2013)CrossRefGoogle Scholar
  3. 3.
    Doležel, P., Rozsíval, P., Mariška, M., Havlíček, L.: PID controller design for nonlinear oscillative plants using piecewise linear neural network. In: Proceedings of the 19th International Conference on Process Control, PC 2013, pp. 19–24 (2013)Google Scholar
  4. 4.
    Gazdoš, F., Dostál, P., Marholt, J.: Robust control of unstable systems: algebraic approach using sensitivity functions. Int. J. Math. Models Methods Appl. Sci. 5(7), 1189–1196 (2011)Google Scholar
  5. 5.
    Gazdoš, F., Dostál, P., Pelikán, R., Bobál, V.: Polynomial approach to control system design for a magnetic levitation system. In: 2007 European Control Conference, ECC 2007, pp. 4561–4567 (2007)Google Scholar
  6. 6.
    Hypiusová, M., Kozáková, A.: Robust PID controller design for the magnetic levitation system: frequency domain approach. In: Proceedings of the 21st International Conference on Process Control, PC 2017, pp. 274–279 (2017)Google Scholar
  7. 7.
    Chalupa, P., Novák, J., Malý, M.: Modelling and model predictive control of magnetic levitation laboratory plant. In: Proceedings of the 31st European Conference on Modelling and Simulation, ECMS 2017, pp. 367–373 (2017)Google Scholar
  8. 8.
    Qin, Y., Peng, H., Ruan, W.: Modeling and predictive control of magnetic levitation ball system based on RBF-ARX model with linear functional weights. Sci. Technol. 47(8), 2676–2684 (2016). Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South UniversityGoogle Scholar
  9. 9.
    Rušar, L., Krhovják, A., Bobál, V.: Predictive control of the magnetic levitation model. In: Proceedings of the 21st International Conference on Process Control, PC 2017, pp. 345–350 (2017)Google Scholar
  10. 10.
    Stettinger, G., Benedikt, M., Horn, M., Zehetner, J., Giebenhain, C.: Control of a magnetic levitation system with communication imperfections: a model-based coupling approach. Control Eng. Pract. 58, 161–170 (2017)CrossRefGoogle Scholar
  11. 11.
    Du, X., Zhang, Y.: An improved method of mathematical model on current controlled magnetic levitation ball system. Appl. Mech. Mater. 128–129, 70–73 (2012)Google Scholar
  12. 12.
    Galvão, R.K.H., Yoneyama, T., De Araújo, F.M.U., Machado, R.G.: A simple technique for identifying a linearized model for a didactic magnetic levitation system. IEEE Trans. Educ. 46(1), 22–25 (2003)CrossRefGoogle Scholar
  13. 13.
    Guess, T.M., Alciatore, D.G.: Model development and control implementation for a magnetic levitation apparatus. In: ASME Database Symposium, pp. 993–999 (1995)Google Scholar
  14. 14.
    Humusoft: CE 152 Magnetic levitation model – educational manual. Humusoft s.r.o., Prague (2002)Google Scholar
  15. 15.
    Chalupa, P., Malý, M., Novák, J.: Nonlinear simulink model of magnetic levitation laboratory plant. In: Proceedings of the 30th European Conference on Modelling and Simulation, ECMS 2016, pp. 293–299 (2016)Google Scholar
  16. 16.
    Jiang, D., Yang, J., Ma, L., Jiang, D.: Model building and simulating for hybrid magnetic levitation ball system. In: International Conference on Mechanic Automation and Control Engineering, MACE 2010, pp. 6105–6110 (2010)Google Scholar
  17. 17.
    Owen, R.B., Maggiore, M.: Implementation and model verification of a magnetic levitation system. In: Proceedings of the American Control Conference, pp. 1142–1147 (2005)Google Scholar
  18. 18.
    Pilat, A.: Modelling, investigation, simulation, and PID current control of active magnetic levitation FEM model. In: 18th International Conference on Methods and Models in Automation and Robotics, MMAR 2013, pp. 299–304 (2013)Google Scholar
  19. 19.
    Sankar, R.C., Chidambaram, M.: Subspace identification of unstable transfer function model for a magnetic levitation system. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 394–399 (2014)Google Scholar
  20. 20.
    Šuster, P., Jadlovská, A.: Modeling and control design of magnetic levitation system. In: Proceedings of the IEEE 10th Jubilee International Symposium on Applied Machine Intelligence and Informatics, SAMI 2012, pp. 295–299 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Process Control, Faculty of Electrical Engineering and InformaticsUniversity of PardubicePardubiceCzech Republic

Personalised recommendations