Hidden Asymmetry in Shape of Biological Patterns

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 765)

Abstract

Various bilaterally symmetrical traits have not the same variability in the magnitude of the fluctuating asymmetry. Directional asymmetry (DA) is the second type of asymmetry with a clear predominance of either right or left structures. Since the FA is a considered indicator of instability, traits with DA are not used in the integral environmental monitoring. In presented paper the geometric morphometrics method is considered. This takes into account the labels that are placed on the bilaterally symmetric structures. The centroid points of consensus figure are drawn by the averaging of landmarks in Cartesian coordinates and the value of the FA shape of lamina is evaluated. In present study the MorphoJ1.06d package was used. The sampling procedure resulted in a nested dataset design. The increase in the accuracy of the measurement indicated a large fraction of the directional asymmetry. 90% of population studied possessed this type asymmetry. 10% of samples were characterized by clear fluctuating asymmetry. The results conclude the importance fine compute approach to testing of stability of development in natural biosystem.

Keywords

Directional asymmetry Method of geometric morphometrics  Cartesian coordinates 

References

  1. 1.
    Palmer, A.R., Strobeck, C.: Fluctuating asymmetry analyses revisited. In: Polak, M. (ed.) Developmental Instability: Causes and Consequences, pp. 279–319. Oxford University Press, New York (2003)Google Scholar
  2. 2.
    Graham, J.H., Raz, S., Hel-Or, H., Nevo, E.: Fluctuating asymmetry: methods, theory, and applications. Symmetry 2, 466–540 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Tikhodeyev, O.N.: Classification of variability forms based on phenotype determining factors: traditional views and their revision. Ecol. Genet. 11(3), 79–92 (2013).  https://doi.org/10.17816/ecogen11379-92CrossRefGoogle Scholar
  4. 4.
    Viscosi, V., Cardini, A.: Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PLoS ONE 6(10), e25630 (2011).  https://doi.org/10.1371/journal.pone.0025630CrossRefGoogle Scholar
  5. 5.
    Savriama, Y., Gómez, J.M., Perfectti, F., Klingenberg, C.P.: Geometric morphometrics of corolla shape: dissecting components of symmetric and asymmetric variation in Erysimum mediohispanicum (Brassicaceae). New Phytol. 196, 945–954 (2012)CrossRefGoogle Scholar
  6. 6.
    Graham, J.H., Emlen, J.M., Freeman, D.C., Leamy, L.J., Kieser, J.: Directional asymmetry and the measurement of developmental instability. Biol. J. Linn. Soc. 64, 1–16 (1998)CrossRefGoogle Scholar
  7. 7.
    Van Dongen, S., Lens, L., Molenberghs, G.: Mixture analysis of asymmetry: modelling directional asymmetry, antisymmetry and heterogeneity in fluctuating asymmetry. Ecol. Lett. 2, 387–396 (1999)CrossRefGoogle Scholar
  8. 8.
    Savriama, Y., Klingenberg, C.P.: Beyond bilateral symmetry: geometric morphometric methods for any type of symmetry. BMC Evol. Biol. 11, 280 (2011)CrossRefGoogle Scholar
  9. 9.
    Rohlf, F.J.: Shape statistics: procrustes superimpositions and tangent spaces. J. Classif. 16, 197–223 (1999)CrossRefMATHGoogle Scholar
  10. 10.
    Mardia, K.V., Bookstein, F.L., Moreton, I.J.: Statistical assessment of bilateral symmetry of shapes. Biometrika 87(2), 285–300 (2000).  https://doi.org/10.1093/biomet/87.2.285MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Klingenberg, C.P., Barluenga, M., Meyer, A.: Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56, 1909–1920 (2002)CrossRefGoogle Scholar
  12. 12.
    Leamy, L.J., Routman, E.J., Cheverud, J.M.: An epistatic genetic basis for fluctuating asymmetry of mandible size in mice. Evolution 56(3), 642–653 (2002)CrossRefGoogle Scholar
  13. 13.
    Hochwender, C.G., Robert, S.: Fritz. Fluctuating asymmetry in a Salix hybrid system: the importance of genetic versus environmental causes. Evolution 53(2), 408–416 (1999)CrossRefGoogle Scholar
  14. 14.
    Leamy, L.J., Klingenberg, C.P.: The genetics and evolution of fluctuating asymmetry. Annu. Rev. Ecol. Evol. Syst. 36, 1–21 (2005)CrossRefGoogle Scholar
  15. 15.
    Zorina, A.A., Korosov, A.V.: Variability of asymmetry measures and indexes of leaf characters in the crown of Betula pendula (Betulaceae). Botanicheskiĭ Zhurnal 94(8), 1172–1192 (2009)Google Scholar
  16. 16.
    Baranov, S.G.: Geometric morphometric methods for Testing Developmental Stability of Betula pendula Roth. Biol. Bull. 5, 567–572 (2017)Google Scholar
  17. 17.
    Baranov, S.G.: Fenogenetic aspect of asymmetry of leaf blade Betula pendula Roth. Nauchnye vedomosti BelGU. Seriya: Estestvennye nauki 11(232), 10–17 (2016)Google Scholar
  18. 18.
    Vasilyev, A.G., Vasilyeva, I.A., Bol’shakov, V.N.: Evolutionary-ecological analysis of trends in phenogenetic variation of homologous morphological structures: from populations to ecological series of species. Russ. J. Ecol. 41(5), 365–371 (2010)CrossRefGoogle Scholar
  19. 19.
    Stige, L.C., David, B., Alibert, P.: On hidden heterogeneity in directional asymmetry – can systematic bias be avoided? J. Evol. Biol. 19, 492–499 (2006).  https://doi.org/10.1111/j.1420-9101.2005.01011.xCrossRefGoogle Scholar
  20. 20.
    Fair, J.M., Breshears, D.D.: Drought stress and fluctuating asymmetry in Quercus undulata leaves: confounding effects of absolute and relative amounts of stress? J. Arid. Enviro. 62(2), 235–249 (2005)CrossRefGoogle Scholar
  21. 21.
    Fei, X., Weihua, G., Weihong, X., Renqing, W.: Habitat effects on leaf morphological plasticity in Quercus acutissima. Acta Biologica Cracoviensia Series Botanica 50(2), 19–26 (2008)Google Scholar
  22. 22.
    Kozlov, M.V.: Plant studies on fluctuating asymmetry in Russia: mythology and methodology. Russ. J. Ecol. 48, 1 (2017).  https://doi.org/10.1134/S1067413617010106CrossRefGoogle Scholar
  23. 23.
    Bol’shakov, V.N., Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Y.V., Chibiryak, M.V.: Coupled biotopic variation in populations of sympatric rodent species in the Southern Urals. Russ. J. Ecol. 46(4), 339–344 (2015)CrossRefGoogle Scholar
  24. 24.
    Voita, L.L., Omelko, V.E., Petroava, E.A.: Analysis of the morphometrics variability and intraspecific structure of Sorex Minutissimus Zimmermann 1780 (Lipotyphla: Soricidae) in Russia. Acta Theriol. 8, 167–179 (2013).  https://doi.org/10.4098/at.arch.64-10CrossRefGoogle Scholar
  25. 25.
    Erofeeva, E.A.: Hormesis and paradoxical effects of Drooping Birch (Betula pendula Roth) parameters under motor traffic pollution. Dose-Response 13(2), 1559325815588508 (2015).  https://doi.org/10.1177/1559325815588508CrossRefGoogle Scholar
  26. 26.
    Koroteeva, E.V., Veselkin, D.V., Kuyantseva, N.B., Chashchina, O.E.: The size, but not the fluctuating asymmetry of the leaf, of silver birch changes under the gradient influence of emissions of the Karabash Copper Smelter Plant. Dokl. Biol. Sci. 460, 36–39 (2015). SpringerCrossRefGoogle Scholar
  27. 27.
    Kozlov, M.V., Cornelissen, T., Gavrikov, D.E., Kunavin, M.A., Lamma, A.D., Milligan, J.R., Zverev, V., Zvereva, E.L.: Reproducibility of fluctuating asymmetry measurements in plants: sources of variation and implications for study design. Ecol. Indic. 73, 733–740 (2017)CrossRefGoogle Scholar
  28. 28.
    Dongen, V.S.: Variation in measurement error in asymmetry studies: a new model, simulations and application. Symmetry 7(2), 284–293 (2015)CrossRefGoogle Scholar
  29. 29.
    Kryazheva, N.G., Chistyakova, E.K., Zakharov, V.M.: Analysis of development stability of Betula pendula under conditions of chemical pollution. Russ. J. Ecol. 27(6), 422–424 (1996)Google Scholar
  30. 30.
    Ivanov, V.P., Ivanov, Y.V., Marchenko, S.I., Kuznetsov, V.V.: Application of fluctuating asymmetry indexes of silver birch leaves for diagnostics of plant communities under technogenic pollution. Russ. J. Plant Physiol. 62(3), 340–348 (2015)CrossRefGoogle Scholar
  31. 31.
    Gelashvili, D.B., Cheprunov, E.V., Iudin, D.I.: Structural and bioindicative aspects of fluctuated asymmetry of bilateral organisms. Zhurnal obshchei biologii 65(5), 433–441 (2003)Google Scholar
  32. 32.
    Rohlf, F.J.: Tps Series. Department of Ecology and Evolution, State University of New York, Stony Brook, New York (2010). http://life.bio.sunysb.edu/morph/. Accessed 8 June 2011
  33. 33.
    Rohlf, F.J.: The tps series of software. Hystrix (Ital. J. Mammal.) 26(1), 9–12 (2015)Google Scholar
  34. 34.
    Klingenberg, C.P.: MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).  https://doi.org/10.1111/j.1755-0998.2010.02924.xCrossRefGoogle Scholar
  35. 35.
    Pavlinov, L.Y., Mikeshina, N.G.: Principles and methods of geometric morphometrics. Russ. J. Ecol. 3(6), 473–493 (2002)Google Scholar
  36. 36.
    Klingenberg, C.P.: Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry, 7843–934 (2015).  https://doi.org/10.3390/sym7020843MathSciNetCrossRefGoogle Scholar
  37. 37.
    Breuker, C.J., Patterson, J.S., Klingenberg, C.P.: A single basis for developmental buffering of Drosophila wing shape. PLoS ONE 1(1), e7 (2006)CrossRefGoogle Scholar
  38. 38.
    Hagen, S.B., Ims, R.A., Yoccoz, N.G., Sørlibråten, O.: Fluctuating asymmetry as an indicator of elevation stress and distribution limits in mountain birch (Betula pubescens). Plant Ecol. 195(2), 157–163 (2008)CrossRefGoogle Scholar
  39. 39.
    Vasil’ev, A.G., Vasil’eva, I.A., Marin, Y.F.: Phenogenetic monitoring of the weeping birch (Betula pendula Roth.) in the Middle Urals: testing a new method for assessing developmental instability in higher plants. Russ. J. Ecol. 39(7), 483–489 (2008)CrossRefGoogle Scholar
  40. 40.
    Franiel, I.: Fluctuating asymmetry of Betula pendula Roth. leaves – an index of environment quality. Biodiv. Res. Conserv. 9–10, 7–10 (2008)Google Scholar
  41. 41.
    Van Dongen, S.: Unbiased estimation of individual asymmetry. J. Evol. Biol. 13(1), 107–112 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Vladimir State UniversityVladimirRussia

Personalised recommendations