Advertisement

Modeling and Performance Analysis of Priority Queuing Systems

  • Dariusz Strzęciwilk
  • Włodek M. Zuberk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 763)

Abstract

The paper presents the results of modeling and analysis of data performance on systems that support QoS (Quality of Service). In order to evaluate the performance of the modeled systems used were TPN (Timed Petri Nets). Studied were mechanisms of traffic shaping systems based on PQS (Priority Queuing System). Tested was the impact of the mechanism of generating traffic using TPN. Moreover, discussed were the basic mechanisms and queuing systems occurring in QoS structures. It is shown that models can be effectively used in the modeling and analysis of the performance of computer systems.

Keywords

Priority queuing system Petri nets Performance analysis  Modeling QoS data 

References

  1. 1.
    Buchholz, P., Kriege, J., Felko, I.: Input modeling with phase-type distributions and Markov models: theory and applications. Springer (2014)CrossRefGoogle Scholar
  2. 2.
    Czachórski, T., Domański, A., Domańska, J., Rataj, A.: A study of IP router queues with the use of Markov models. In: International Conference on Computer Networks. Springer International Publishing (2016)Google Scholar
  3. 3.
    Donthi, R., Renikunta, R., Dasari, R., Perati, M.: Study of delay and loss behavior of internet switch-markovian modelling using Circulant Markov Modulated Poisson Process (CMMPP). Appl. Math. 5(3), 512–519 (2014)CrossRefGoogle Scholar
  4. 4.
    Puterman, M., Markov, L.: Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (2014)Google Scholar
  5. 5.
    Bose, S.K.: An Introduction to Queueing Systems. Springer Science & Business Media, New York (2013)Google Scholar
  6. 6.
    Bhatti, S.N., Crowcroft, J.: QoS-sensitive flows: issues in IP packet handling. IEEE Internet Comput. 4(4), 48–57 (2000)CrossRefGoogle Scholar
  7. 7.
    Mishkoy, G., et al.: Priority queueing systems with switchover times: generalized models for QoS and CoS network technologies and analysis. In: The XIV Conference on Applied and Industrial Mathematics, Satellite Conference of ICM, Chisinau (2006)Google Scholar
  8. 8.
    Aurrecoechea, C., Campbell, A.T., Hauw, L.: A survey of QoS architectures. Multimedia Syst. 6(3), 138–151 (1998)CrossRefGoogle Scholar
  9. 9.
    Carmona-Murillo, J., et al.: QoS in next generation mobile networks: an analytical study. In: Resource Management in Mobile Computing Environments, pp. 25–41. Springer International Publishing (2014)Google Scholar
  10. 10.
    Strzęciwilk, D.: Examination of transmission quality in the IP multi-protocol label switching corporate networks. Int. J. Electron. Telecommun. 58(3), 267–272 (2012)CrossRefGoogle Scholar
  11. 11.
    Kim. H.J., Choi, S.G.: A study on a QoS/QoE correlation model for QoE evaluation on IPTV service. In: The 12th International Conference on Advanced Communication Technology (ICACT), vol. 2. IEEE (2010)Google Scholar
  12. 12.
    Li, M.: Queueing Analysis of Unicast IPTV with User Mobility and Adaptive Modulation and Coding in Wireless Cellular Networks. arXiv preprint arXiv:1511.01794 (2015)
  13. 13.
    Zhang, Q., et al.: Early drop scheme for providing absolute QoS differentiation in optical burst-switched networks. In: Workshop on High Performance Switching and Routing, HPSR. IEEE (2003)Google Scholar
  14. 14.
    Zuberek, W., Strzeciwilk, D.: Modeling Quality of Service Techniques for Packet–Switched Networks. Dependability Engineering (2018). ISBN 978-953-51-5592-8Google Scholar
  15. 15.
    Tarasiuk, H., et al.: Performance evaluation of signaling in the IP QoS system. J. Telecommun. Inf. Technol., 12–20 (2011)Google Scholar
  16. 16.
    Menth, M., Briscoe, B., Tsou. T.: Precongestion notification: new QoS support for differentiated services IP networks. IEEE Commun. Mag. 50(3), 94–103 (2012)CrossRefGoogle Scholar
  17. 17.
    Zuberek, W.M.: Timed Petri nets definitions, properties, and applications. Microelectron. Reliab. 31(4), 627–644 (1991)CrossRefGoogle Scholar
  18. 18.
    Gianfranco. B.: Introduction to stochastic Petri nets. Lectures on Formal Methods and Performance Analysis, pp. 84–155. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Roux, O.H., Déplanche, A.M.: A t-time Petri net extension for real time-task scheduling modeling. Eur. J. Autom. 36(7), 973–987 (2002)Google Scholar
  20. 20.
    Coolahan, J.E., Roussopoulos, N.: Timing requirements for time-driven systems using augmented Petri nets. IEEE Trans. Softw. Eng. 5, 603–616 (1983)CrossRefGoogle Scholar
  21. 21.
    Cheng, A.: Real-Time Systems: Scheduling, Analysis, and Verification. Wiley (2003)Google Scholar
  22. 22.
    Strzeciwilk, D., Zuberek. W.M.: Modeling and performance analysis of QoS data. In: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016. International Society for Optics and Photonics (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied InformaticsUniversity of Life SciencesWarsawPoland
  2. 2.Department of Computer ScienceMemorial UniversitySt. John’sCanada

Personalised recommendations