Skip to main content

The Role of Nanoemulsions as Antimicrobial Agents in Plant Protection

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Abstract

Nanoemulsion is a mixture of two or more liquids (such as oil and water) that do not easily combine. In nanoemulsion, the diameters of the dispersed droplets are 500 nm or less. High-energy and low-energy methods can prepare stable nanoemulsions. High-pressure homogenizer or ultrasound homogenizer can be used to prepare nanoemulsion by high-energy emulsification method. Self-emulsification and phase-inversion methods – phase-inversion temperature and phase-inversion composition – are low-energy methods for nanoemulsion preparation. Low-energy emulsification methods depend on the phase behavior and properties of the ingredients, and they use the stored energy of the system to form nanodroplets. The emulsification can be resulted by changing the parameters such as temperature and composition, which would affect the hydrophilic-lipophilic balance (HLB) of the system. This chapter dedicated in the advantages, preparation, characterization, and antimicrobial activity of nanoemulsions in the field of plant protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA, Khokhlov AR (2015) Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl Nanosci 5:255–265

    Article  CAS  Google Scholar 

  • Adnan A, Mohammad R, Farhan JA, Zeenat I, Roop KK, Aqil M, Sushama T (2009) Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech 10(1):69–76

    Article  CAS  Google Scholar 

  • Anton N, Vandamme T (2009) The universality of low-energy nano-emulsification. Int J Pharm 377(1–2):142–147

    Article  CAS  PubMed  Google Scholar 

  • Attwood D (1994) Microemulsions. In: Kreuer J (ed) Colloidal drug delivery systems. Marcel Dekker, New York, pp 31–71

    Google Scholar 

  • Balta I, Brinzan L, Stratakos A, Linton M, Kelly C, Pinkerton L, Corcionivoschi N (2017) Geraniol and linalool loaded nanoemulsions and their antimicrobial activity. Bull UASVM Anim Sci Biotechnol 74(2):157–161

    Google Scholar 

  • Barea MJ, Jekins MJ, Gaber MH (2010) Evaluation of liposomes coated with a pH responsive polymer. Int J Pharm 402(1–2):89–94

    Article  CAS  PubMed  Google Scholar 

  • Bejrapha P, Choi M, Surassmo S, Chun J, Min S (2011) Formulation and antimicrobial activity on Escherichia coli of nanoemulsion coated with whey protein isolate. Korean J Food Sci Anim Resour 31:543–550

    Article  Google Scholar 

  • Bouchemal K, Briancon S, Perrier E, Fessi H (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int J Pharm 280:241–251

    Article  CAS  PubMed  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wang Y, Zheng F, Wu Y, Liang W (2000) Studies on cloud point of agrochemical microemulsions. Colloids Surf A 175:257–262

    Article  CAS  Google Scholar 

  • Chiesa M, Garg J, Kang YT, Chen G (2008) Thermal conductivity and viscosity of water in oil nanoemulsions. Colloids Surf A 326:67–72

    Article  CAS  Google Scholar 

  • Debnath S, Satayanarayana P, Gampa VK (2011) Nanoemulsion-a method to improve the solubility of lipophilic drugs. Int J Adv Pharm Sci 2(2–3):72–83

    Google Scholar 

  • Donsì F, Annunziata M, Sessa M, Ferrari G (2011) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Food Sci Technol 44:1908–1914

    Google Scholar 

  • Forgiarini A, Esquena J, Gonzalez C, Solans C (2001) Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 17:2076–2083

    Article  CAS  Google Scholar 

  • Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N (2013) Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J Nanosci Nanotechnol 13:114–122

    Article  CAS  PubMed  Google Scholar 

  • Graves S, Meleson K, Wilking J (2005) Structure of concentrated nanoemulsions. J Chem Phys 122(13):134703

    Article  CAS  PubMed  Google Scholar 

  • Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR (2001) A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 156:1–7

    Article  CAS  PubMed  Google Scholar 

  • Haritha A, Syed PB, Koteswara RP, Chakravarthi V (2013) A brief introduction to methods of preparation, applications and characterization of nanoemulsion drug delivery systems. Indian J Res Pharm Biotechnol 1(1):25–28

    CAS  Google Scholar 

  • Izquierdo P, Feng J, Esquena J, Tadros TF, Dederen JC, Garcia MJ (2005) The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. J Colloid Interface Sci 285(1):388–394

    Article  CAS  PubMed  Google Scholar 

  • Jafari SM, He Y, Bhandari B (2007) Optimization of nanoemulsion production by microfluidization. Eur Food Res Technol 225:733–741

    Article  CAS  Google Scholar 

  • Karthikeyan R, Amaechi BT, Rawls HR, Lee VA (2011) Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch Oral Biol 56:437–445

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan S, Jeeva PA, Jerobin J, Mukherjee A, Chandrasekaran N (2012) Formulation and characterization of nanoemulsion coatings from Azadirachta indica. Int J ChemTech Res 4(4):1566–1570

    CAS  Google Scholar 

  • Kayes JB (1999) Disperse systems. In: Aulton ME (ed) Pharmaceutics the science of dosage form design. Churchill Livingstone, Edinburgh, pp 81–118 571

    Google Scholar 

  • Kim CK, Cho YJ, Gao ZG (2001) Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J Control Release 70:149–155

    Article  CAS  PubMed  Google Scholar 

  • Kreilgaard M, Pedersen EJ, Jaroszewski JW (2000) NMR characterization and transdermal drug delivery potential of microemulsion systems. J Control Release 69:421–433

    Article  CAS  PubMed  Google Scholar 

  • Lamaallam S, Bataller H, Dicharry C, Lachaise J (2005) Formation and stability of mini-emulsions produced by dispersion of water/oil/surfactants concentrates in a large amount of water. Colloids Surf A 270–271(1–3):44–51

    Article  CAS  Google Scholar 

  • Lee KW, Omar D, Abdan K, Wong MY (2016) Physiochemical characterization of nanoemulsion formulation of phenazine and their antifungal efficacy against Ganoderma boninense PER71 in vitro. Res J Pharm Biol Chem Sci 7(6):3056–3066

    CAS  Google Scholar 

  • Li X, Anton N, Ta TMC, Zhao M, Messaddeq N, Vandamme TF (2011) Microencapsulation of nano-emulsions: novel Trojan particles for bioactive lipid molecule delivery. Int J Nanomedicine 6:1313–1325

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lu W, Huang D, Wang C, Yeh C, Tsai J, Huang Y, Li P (2018) Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J Food Drug Anal 26:82–89 https://doi.org/10.1016/j.jfda.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  • Mason TG, Graves SM, Wilking JN, Lin MY (2006) Extreme emulsification: formation and structure of nanoemulsions. Condens Matter Phys 9(1):193–199

    Article  Google Scholar 

  • McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330

    Article  CAS  PubMed  Google Scholar 

  • Pey CM, Maestro A, Solé I, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids Surf A 288(1–3):144–150

    Article  CAS  Google Scholar 

  • Porras M, Solans C, González C, Gutiérrez JM (2008) Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids Surf A 324(1–3):181–188

    Article  CAS  Google Scholar 

  • Quin C, Mc Clement DJ (2011) Formation of nanoemulsions stabilized by model food grade emulsifiers using high pressure homogenization: factors affecting particle size. Food Hydrocoll 25(5):1000–1008

    Article  CAS  Google Scholar 

  • Ravi TPU, Padma T (2011) Nanoemulsions for drug delivery through different routes. Res Biotechnol 2(3):1–13

    CAS  Google Scholar 

  • Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M (2007) Development and bioavailability assessment of ramipril nanoemulsion formulation. Euro J Pharm Biopharm 66(2):227–243

    Article  CAS  Google Scholar 

  • Shahavi MH, Hosseini M, Jahanshahi M, Meyer RL, Darzi GN (2016) Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method. Desalin Water Treat 57(39):18379–18390

    Article  CAS  Google Scholar 

  • Shinoda K, Saito H (1968) The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. J Colloid Interface Sci 26(1):70–74

    Article  CAS  Google Scholar 

  • Solans C, Esquena J, Forgiarini AM, Uson N, Morales D, Izquierdo P (2002) Nanoemulsions: formation and properties. In: Mittal KL, Shah DO (eds) Surfactants in solution: fundamentals and applications. Marcel Dekker, New York, p 525

    Google Scholar 

  • Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10(3–4):102–110

    Article  CAS  Google Scholar 

  • Sole I, Maestro A, Pey CM, Gonzalez C, Solans C, Gutierrez JM (2006) Nanoemulsions preparation by low energy methods in an ionic surfactant system. Colloids Surf A 288:138–143

    Article  CAS  Google Scholar 

  • Sole I, Pey CM, Maestro A, Gonzalez C, Porras M, Solans C, Gutierrez JM (2010) Nanoemulsions prepared by phase inversion composition method: preparation variables and scale up. J Colloid Interface Sci 344(2):417–423

    Article  CAS  PubMed  Google Scholar 

  • Sonneville-Aubrun O, Simonnet JT, L’Alloret F (2004) Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci 108–109:145–149

    Article  CAS  PubMed  Google Scholar 

  • Sugumar S, Nirmala J, Ghosh V, Anjali H, Mukherjee A, Chandrasekaran N (2013) Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens. J Basic Microbiol 53(8):677–685

    Article  CAS  PubMed  Google Scholar 

  • Teixeira PC, Leite GM, Domingues RJ, Silva J, Gibbs PA, Ferreira JP (2007) Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int J Food Microbiol 118(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Tenjarla S (1999) Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 16:461–521

    Article  CAS  PubMed  Google Scholar 

  • Topuz OK, Özvural EB, Zhao Q, Huang Q, Chikindas M, Gölükçü M (2016) Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food Chem 203:117–123

    Article  CAS  PubMed  Google Scholar 

  • Wagner JG, Gerrard ES, Kaiser DG (1996) The effect of the dosage form on serum levels of indoxole. Clin Pharmacol Ther 7:610–619

    Article  Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Powell CA, Duan Y, Shatters R, Zhang M (2015) Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through citrus leaf cuticles to control citrus huanglongbing. PLoS One 10(7):e0133826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahid N, Ali A, Manickam S, Siddiqui Y, Maqboo M (2012) Potential of chitosan-loaded nanoemulsions to control different Colletotrichum spp. and maintain quality of tropical fruits during cold storage. J Appl Microbiol 113:925–939

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Vriesekoop F, Yuan Q, Liang H (2014) Effects of nisin on the antimicrobial activity of D-limonene and its nanoemulsion. Food Chem 150:307–312

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the International Foundation for Science, Stockholm, Sweden, through a grant to Hashim Ayat (F5853).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khamis Youssef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashim, A.F., Youssef, K., Abd-Elsalam, K.A. (2018). The Role of Nanoemulsions as Antimicrobial Agents in Plant Protection. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-91161-8_6

Download citation

Publish with us

Policies and ethics