Skip to main content

Target Detection, Localization, and Tracking in Wireless Sensor Networks

  • Chapter
  • First Online:
Mission-Oriented Sensor Networks and Systems: Art and Science

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 163))

Abstract

This chapter will investigate target detection approaches, sensor node localization algorithms, and target tracking schemes in wireless sensor network (WSN). WSN is a self-organized distributed network composed of a large quantity of small, inexpensive sensor nodes. They are employed to capture information of the target, which is similar to humans’ sense of hearing, sight, smell, and touch. The integration of a plurality of homogeneous or heterogeneous sensors will result in more accurate target detection, node localization, and target tracking than that of a single sensor, and thus WSN plays an important role in military, environment, medical, and industrial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, J., Liang, Q.: Design and analysis of distributed radar sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(11) (2011)

    Article  Google Scholar 

  2. Liang, J., Liang, Q., Zhou, Z.: Radar sensor network design and optimization for blind speed alleviation. In: Wireless Communications and Networking Conference 2007, pp. 2643–2647. 11–15 March 2007

    Google Scholar 

  3. Liang, Q.: Waveform design and diversity in radar sensor networks: theoretical analysis and application to automatic target recognition. IEEE Commun. Soc. Sensor Ad Hoc. Commun. Netw. 2, 684–689 (2006)

    Google Scholar 

  4. Hung, D.L., Liang, Q.: Diversity in radar sensor networks: theoretical analysis and application to target detection. Int. J. Wirel. Inform. Netw. 16(4), 209–216 (2009)

    Article  Google Scholar 

  5. Dutta, P.K., Arora, A.K., Bibyk, S.B.: Towards radar-enabled sensor networks. In: Proceedings of the 5th International Conference on Information Processing in Sensor Networks, pp. 467–474 (2006)

    Google Scholar 

  6. Ly, H.D., Liang, Q.: Spatial-temporal-frequency diversity in radar sensor networks. In: Military Communications Conference (MILCOM 2006), Washington, DC, Oct 2006

    Google Scholar 

  7. Ly, H.D., Liang, Q.: Collaborative multi-target detection in radar sensor networks. In: IEEE Military Communications Conference, MILCOM 2007, pp. 1–7, 29–30 Oct 2007

    Google Scholar 

  8. Deng, H.: Target detection with distributed radar sensor networking systems (DRASENS). In: 2010 IEEE 10th International Conference on Signal Processing, pp. 1951–1954, 24–28 Oct 2010

    Google Scholar 

  9. Skolnik, M.I.: Introduction to Radar Systems, 3rd edn. McGraw Hill, New York (2001)

    Google Scholar 

  10. Levanon, N.: Radar Principles. Wiley, New York (1988)

    Google Scholar 

  11. Richards, M.A.: Fundamentals of Radar Signal Processing. McGraw Hill Companies, New York (2005)

    Google Scholar 

  12. Chevalier, F.L.: Principles of Radar and Sonar Signal Processing. Artech house, MA (2002)

    Google Scholar 

  13. Hume, A.L., Baker, C.J.: Netted radar sensing. In: Proceedings of the 2001 IEEE Radar Conference, pp. 23–26, May 2001

    Google Scholar 

  14. Haykin, S.: Cognitive radar networks. In: 2005 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 1–3 Dec 2005

    Google Scholar 

  15. Dutta, P.K., Arora, A.K., Bibyk, S.B.: Towards radar-enabled sensor networks. In: The 5th International Conference on Information Processing in Sensor Networks, pp. 467–474, April 2006

    Google Scholar 

  16. Withington, P., Fluhler, H., Nag, S.: Enhancing homeland security with advanced radar sensors. IEEE Microwav. Mag. 51–58 (2003)

    Google Scholar 

  17. Fishler, E., Haimovich, A., Blum, R.S., Cimini, L.J., Chizhik, D., Valenzuela, A.: MIMO radar: an idea whose time has come. In: Proceedings of the IEEE Radar Conference, pp. 71–78, April 2004

    Google Scholar 

  18. Li, J., Stoica, P.: MIMO Radar Signal Processing. Wiley 2009

    Google Scholar 

  19. Xiao, L., Shi, J., Xiqi, G., Kai-kit, W.: Near-optimal power allocation for MIMO channels with mean or covariance feedback. IEEE Trans. Commun. 58(1), 289–300 (2010)

    Article  Google Scholar 

  20. Heliot, F., Imran, M.A., Tafazolli, R.: Energy-efficient power allocation for point-to-point MIMO systems over the Rayleigh fading channel. IEEE Wirel. Commun. Lett. 1(4), 304–307 (2012)

    Article  Google Scholar 

  21. Yellapantula, R., Yingwei, Y., Ansari, R.: Antenna selection and power control in MIMO systems with continuously varying channels. IEEE Commun. Lett. 13(7), 480–482 (2009)

    Article  Google Scholar 

  22. Liu, Y., Liang, J.: Distributed radar sensor network (RSN) versus MIMO-RSN. In: IEEE ICC 2013 RSN Workshop, pp. 911–915. Budapest, June 2013

    Google Scholar 

  23. Yang, L., Jing, L.: Optimization for distributed radar sensor network (RSN) and MIMO-RSN in flat fading channels. Phys. Commun. 13, 253–259 (2014)

    Article  Google Scholar 

  24. Mao, C., Liu, M., Liang, J., Zhao, G.: Performance for MIMO-RSN with different power allocation methods, pp. 2540–2544. IEEE ICCW, London (2015)

    Google Scholar 

  25. Ling, Y., Liang, J., Liu, W.: Graphical deployment Strategies in radar sensor networks (RSN) for target detection. EURASIP J. Wirel. Commun. Netw. 2013, 55 (2013)

    Google Scholar 

  26. Liang, J., Hu, Y., Liu, H., Mao, C.: Fuzzy clustering in radar sensor networks for target detection. Ad Hoc Netw. (2016)

    Google Scholar 

  27. Shu, H., Liang, Q.: Data fusion in a multi-target radar sensor network. In: 2007 IEEE Radio and Wireless Symposium, pp. 129–132. 9–11 Jan 2007

    Google Scholar 

  28. Yu, S., Wang, R., Xu, H., Wan, W., Gao, Y., Jin, Y.: WSN nodes deployment based on artificial fish school algorithm for traffic monitoring system. In: IET International Conference on Smart and Sustainable City, pp. 1–5. 6-8 July 2011

    Google Scholar 

  29. Xu, K., Wang, Q., Hassanein, H., Takahara, G.: Optimal wireless sensor networks (WSNs) deployment: minimum cost with lifetime constraint. Wirel. Mobile Comp. Netw. Commun. 3, 454–461 (2005)

    Google Scholar 

  30. Luo, H., Liu, Z., Xue, F.: A deployment strategy for target surveillance sensor networks based on acoustic energy measurements. In: 2nd International Conference on Future Computer and Communication, vol. 1, pp. 686–690. May 2010

    Google Scholar 

  31. Mageid, S.A., Ramadan, R.A.: Efficient deployment algorithms for mobile sensor networks. In: International Conference on Autonomous and Intelligent Systems, pp. 1–6, 21–23 June 2010

    Google Scholar 

  32. Lin, Y., Chen, B., Varshney, P.K.: Decision fusion rules in multi-hop wireless sensor networks. IEEE Trans. Aerosp. Electron. Syst. 41(2) 2005

    Google Scholar 

  33. Aitsaadi, N., Achir, N., Boussetta, K., Pujolle, G.: Multi-objective WSN deployment: quality of monitoring, connectivity and lifetime. In: IEEE International Conference on Communications (ICC), pp. 1–6, 23–27 May 2010

    Google Scholar 

  34. Kapnadak, V., Coyle, E.J.: Optimal non-uniform deployment of sensors for detection in single-hop wireless sensor networks. In: 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 89–97. 27–30 June 2011

    Google Scholar 

  35. Gogu, A., Nace, D., Challal, Y.: A note on joint optimal transmission range assignment and sensor deployment for wireless sensor networks. In: 2010 14th International Telecommunications Network Strategy and Planning Symposium (NETWORKS), pp. 1–6. 27–30 Sept 2010

    Google Scholar 

  36. Xu, K., Hassanein, H., Takahara, G., Wang, Q.: Relay node deployment strategies in heterogeneous wireless sensor networks. IEEE Trans. Mobile Comput. 9, 145–159 (2011)

    Google Scholar 

  37. Ababnah, A., Natarajan, B.: Optimal sensor deployment for value-fusion based detection. IEEE Global Telecommunications Conference, GLOBECOM 2009, pp. 1–6. Nov–Dec 2009

    Google Scholar 

  38. Zhao, F., Guibas, L.: Wireless Sensor Networks: an information processing approach, Morgan Kaufmann (2004)

    Google Scholar 

  39. Younis, O., Fahmy, S.: Distributed clustering in ad hoc sensornetworks: a hybrid, energy-efficient approach. In: Proceeding of IEEE Conference on Computer Communications (INFOCOM), pp. 629–640. Hong-Kong, China, Mar 2004

    Google Scholar 

  40. Ramaswamy, L., Gedik, B., Liu, L.: A distributed approach to node clustering in decentralized peer-to-peer networks. IEEE Trans. Parallel Distrib. Syst. 16(9), 814–829 (2005)

    Article  Google Scholar 

  41. Liang, Q.: Clusterhead election for mobile ad hoc wireless network. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC2003). Beijing, Sept 2003

    Google Scholar 

  42. Wang, Y., Chen, L., Mei, J.-P.: Incremental fuzzy clustering with multiple medoids for large data. IEEE Trans. Fuzzy Syst. 22(6), 1557–1568 (2014)

    Article  Google Scholar 

  43. Frey, H., Görgen, D.: Geographical cluster-based routing in sensingcovered networks. IEEE Trans. Parallel Distrib. Syst. 17(9), 899–911 (2006)

    Article  Google Scholar 

  44. Kim, J.-M., Park, S.-H., Han, Y.-J., Chung, T.-M.: Chef: cluster head election mechanism using fuzzy logic in wireless sensor networks. In: 2008 10th International Conference on Advanced communication technology, (ICACT 2008), vol. 1, pp. 654–659 (2008)

    Google Scholar 

  45. Nayak, P., Devulapalli, A.: A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sens. J. 16(1), 137–144 (2016)

    Article  Google Scholar 

  46. Hu, Y., Liang, J.: CFAR decision fusion approaches in the clustered radar sensor networks using LEACH and HEED. Int. J. Distrib, Sens. Netw. (2015)

    Google Scholar 

  47. James, C.B.: Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers (1981)

    Google Scholar 

  48. Jung, J.W., Weitnauer, M.A.: On using cooperative routing for lifetime optimization of multi-hop wireless sensor networks: analysis and guidelines. IEEE Trans. Commun. 61(8), 3413–3423 (2013)

    Article  Google Scholar 

  49. Wei, C., Zhi, C., Fan, P., Letaief, K.B.: Asor: an energy efficient multi-hop opportunistic routing protocol for wireless sensor networks over rayleigh fading channels. IEEE Trans. Wirel. Commun. 8(5), 2452–2463 (2009)

    Article  Google Scholar 

  50. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global positioning system: theory and practice. Springer Science and Business Media (2012)

    Google Scholar 

  51. Akyildiz, I.F., Vuran, M.C.: Wireless Sensor Networks, 4th edn, Wiley (2010)

    Google Scholar 

  52. Niculescu D., Nath B.: Ad hoc positioning system (APS) using AOA. In: 2003 INFOCOM Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, vol. 3, pp. 1734–1743 (2003)

    Google Scholar 

  53. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small devices. IEEE pers. Commun. 7(5), 28–34 (2000)

    Article  Google Scholar 

  54. Doherty, L., El Ghaoui, L.: Convex position estimation in wireless sensor networks In: Proceedings—IEEE INFOCOM, vol. 3, pp. 1655–1663 (2001)

    Google Scholar 

  55. Niculescu, D., Nath, B.: DV based positioning in ad hoc networks. Telecommun. Syst. 22(1–4), 267–280 (2003)

    Article  Google Scholar 

  56. He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.: Range-free localization schemes for large scale sensor networks. In: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, pp. 81–95 (2003)

    Google Scholar 

  57. Hu, L., Evans, D.: Localization for mobile sensor networks. Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, pp. 45–57 (2004)

    Google Scholar 

  58. Zhang, S., Cao, J., Li-Jun, C., Chen, D.: Accurate and energy-efficient range-free localization for mobile sensor networks. IEEE Trans. Mobile Comput. 9(6), 897–910 (2010)

    Article  Google Scholar 

  59. Chen, Y.-S., Liao, Y.-J.: HVE-mobicast: a hierarchical-variant-egg based mobicast routing protocol for wireless sensornets. In: IEEE Wireless Communications and Networking Conference (WCNC2006), vol. 2, pp. 697–702. Las Vegas, NV, USA, April 2006

    Google Scholar 

  60. Tsai, H.-W., Chu, C.-P., Chen, T.-S.: Mobile object tracking in wireless sensor networks. Comput. Commun. 30, 1811–1825 (2007)

    Article  Google Scholar 

  61. Kung, H.T., Vlah, D.: Efficient location tracking using sensor networks. In: IEEE Wireless Communications and Networking Conference (WCNC 2003). New Orleans, Louisiana, USA, March 2003

    Google Scholar 

  62. Lin, C.-Y., Peng, W.-C., Tseng, Y.-C.: Efficient in-network moving object tracking in wireless sensor networks. IEEE Trans. Mobile Comput. 8(5), 1044–1056 (2006)

    Article  Google Scholar 

  63. Xu, Y., Winter, J., Lee, W.-C.: Prediction-based strategies for energy saving in object tracking sensor networks. In: Proceedings of IEEE International Conference on Mobile Data Management, pp. 346–357 (2004)

    Google Scholar 

  64. Xu, Y., Winter, J., Lee, W.-C.: Dual predictionbased reporting for object tracking sensor networks. In: The 1st Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous04), pp. 154–163 (2004)

    Google Scholar 

  65. Wang, Z., Li, H., Shen, X., Sun, X., Wang, Z.: Tracking and predicting moving targets in hierarchical sensor networks. In: IEEE International Conference on Networking, Sensing and Control, ICNSC, pp. 1169–1173 (2008)

    Google Scholar 

  66. Haykin, S.S.: Adaptive Filter Theory. Pearson Education India (2008)

    Google Scholar 

  67. Wang, Y., Chen, L., Mei, J.: Incremental fuzzy clustering with multiple medoids for large data. IEEE Trans. Fuzzy Syst. 22(6), 1557–1568 (2014)

    Article  Google Scholar 

  68. Wälchli, M., Skoczylas, P., Meer, M., Braun, T.: Distributed event localization and tracking with wireless sensors. In: Wired/Wireless Internet Communications, pp. 247–258 (2007)

    Google Scholar 

  69. Lin, J., Xiao, W., Lewis, F.L., Xie, L.: Energy-efficient distributed adaptive multisensor scheduling for target tracking in wireless sensor networks. IEEE Trans. Instrum. Meas. 58(6), 1886–1896 (2009)

    Article  Google Scholar 

  70. Yangyang H.: Research on signal fusion in heterogenous sensor network. Master thesis, University of Electronic Science and Tehnology of China (2016)

    Google Scholar 

  71. Degroot, M.H., Schervish, M.J.: Probability and Statistics. Pearson Education India (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, J., Yu, X., Liu, X., Mao, C., Ren, J. (2019). Target Detection, Localization, and Tracking in Wireless Sensor Networks. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-91146-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91146-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91145-8

  • Online ISBN: 978-3-319-91146-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics